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Abstract

A binary CSP instance satisfying the broken-
triangle property (BTP) can be solved in polyno-
mial time. Unfortunately, in practice, few instances
satisfy the BTP. We show that a local version of the
BTP allows the merging of domain values in bi-
nary CSPs, thus providing a novel polynomial-time
reduction operation. Experimental trials on bench-
mark instances demonstrate a significant decrease
in instance size for certain classes of problems. We
show that BTP-merging can be generalised to in-
stances with constraints of arbitrary arity. A direc-
tional version of the general-arity BTP then allows
us to extend the BTP tractable class previously de-
fined only for binary CSP.

1 Introduction

At first sight one could assume that the discipline of con-
straint programming has come of age. On the one hand, effi-
cient solvers are regularly used to solve real-world problems
in diverse application domains while, on the other hand, a rich
theory has been developed concerning, among other things,
global constraints, tractable classes, reduction operations and
symmetry. The research reported in this paper is part of a
long-term project to bridge the gap between theory and prac-
tice.

Most research on tractable classes has been based on
classes defined by placing restrictions either on the types of
constraints or on the constraint hyper-graph whose vertices
are the variables and whose hyper-edges are the constraint
scopes. Another way of defining classes of binary CSP in-
stances consists in imposing conditions on the microstructure,
a graph whose vertices are the possible variable-value assign-
ments with an edge linking each pair of compatible assign-
ments[Jégou, 1993; Salamon and Jeavons, 2008]. If each
vertex of the microstructure, corresponding to a variable-
value assignment〈x, a〉, is labelled by the variablex, then
this so-called coloured microstructure retains all informa-
tion from the original instance. The broken-triangle property
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(BTP) is a simple local condition on the coloured microstruc-
ture which defines a tractable class of binary CSP[Cooper
et al., 2010]. Inspired by the BTP, investigation of other
forbidden patterns in the coloured microstructure has led to
the discovery of new tractable classes[Cohenet al., 2012;
Cooper and Escamocher, 2015; Cooper andŽivný, 2012;
El Mouelhi et al., 2015] as well as new reduction operations
based on variable elimination[Cohenet al., 2015].

For simplicity of presentation we use two different repre-
sentations of constraint satisfaction problems. In the binary
case, our notation is fairly standard, whereas in the general-
arity case we use a notation close to the representation of SAT
instances. This is for presentation only, though, and our algo-
rithms donotneed instances to be represented in this manner.

Definition 1 A binary CSP instanceI consists of

• a setX of n variables,

• a domainD(x) of values for each variablex ∈ X,

• a relationRxy ⊆ D(x)×D(y), for each pair of distinct
variablesx, y ∈ X, which consists of the set of compat-
ible pairs of values(a, b) for variables(x, y).

A partial solutionto I on Y = {y1, . . . , yr} ⊆ X is a set
{〈y1, a1〉, . . . , 〈yr, ar〉} such that∀i, j ∈ [1, r], (ai, aj) ∈
Ryiyj . A solutionto I is a partial solution onX.

For simplicity of presentation, Definition 1 assumes that
there is exactly one constraint relation for each pair of vari-
ables. An instanceI is arc consistentif for each pair of dis-
tinct variablesx, y ∈ X, for each valuea ∈ D(x), there is a
valueb ∈ D(y) such that(a, b) ∈ Rxy.

In our representation of general-arity CSP instances, we
require the notion oftuplewhich is simply a set of variable-
value assignments. For example, in the binary case, the tuple
{〈x, a〉, 〈y, b〉} is compatibleif (a, b) ∈ Rxy andincompati-
bleotherwise.

Definition 2 A (general-arity) CSP instanceI consists of

• a setX of n variables,

• a domainD(x) of values for each variablex ∈ X,

• a set NoGoods(I) consisting of incompatible tuples.

A partial solutionto I on Y = {y1, . . . , yr} ⊆ X is a tuple
t = {〈y1, a1〉, . . . , 〈yr, ar〉} such that no subset oft belongs
to NoGoods(I). A solutionis a partial solution onX.
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Figure 1: A broken triangle on two valuesa, b for a given
variablex.

2 Value merging in binary CSP
In this section we consider a method, based on the BTP, for
reducing domain size while preserving satisfiability. Instead
of eliminating a value, as in classic reduction operations such
as arc consistency or neighbourhood substitution, we merge
two values. We show that the absence of broken triangles on
two values for a variablex in a binary CSP instance allows us
to merge these two values in the domain ofx while preserv-
ing satisfiability. This rule generalises the notion of virtual
interchangeability[Likitvivatanavong and Yap, 2013] as well
as neighbourhood substitution[Freuder, 1991].

It is known that if for a given variablex in an arc-consistent
binary CSP instanceI, the set of (in)compatibilities (known
as a broken-triangle) shown in Figure 1 occurs for no two
valuesa, b ∈ D(x) and no two assignments to two other
variables, then the variablex can be eliminated fromI with-
out changing the satisfiability ofI [Cooper et al., 2010;
Cohenet al., 2015]. In figures, each bullet represents a
variable-value assignment, assignments to the same variable
are grouped together within the same oval and compatible
(incompatible) pairs of assignments are linked by solid (bro-
ken) lines. Even when this variable-elimination rule cannot
be applied, it may be the case that for a given pair of values
a, b ∈ D(x), no broken triangle occurs. We will show that
if this is the case, then we can perform a domain-reduction
operation which consists in merging the valuesa andb.

Definition 3 Merging valuesa, b ∈ D(x) in a binary CSP
consists in replacinga, b in D(x) by a new valuec which
is compatible with all variable-value assignments compati-
ble with at least one of the assignments〈x, a〉 or 〈x, b〉. A
value-merging conditionis a polytime-computable property
P (x, a, b) of assignments〈x, a〉, 〈x, b〉 in a binary CSP in-
stanceI such that whenP (x, a, b) holds, the instanceI ′ ob-
tained fromI by merginga, b ∈ D(x) is satisfiable if and
only if I is satisfiable.

We now formally define the value-merging condition based
on the BTP.

Definition 4 A broken triangleon the pair of variable-value
assignmentsa, b ∈ D(x) consists of a pair of assignments
d ∈ D(y), e ∈ D(z) to distinct variablesy, z ∈ X \{x} such
that (a, d) /∈ Rxy, (b, d) ∈ Rxy, (a, e) ∈ Rxz, (b, e) /∈ Rxz

and(d, e) ∈ Ryz. The pair of valuesa, b ∈ D(x) is BT-free
if there is no broken triangle ona, b.

Proposition 5 In a binary CSP instance, being BT-free is a
value-merging condition. Furthermore, given a solution to
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Figure 2: (a) A broken triangle exists on valuesa′, b′ at vari-
ablez. (b) After BTP-merging of valuesa andb in D(x), this
broken triangle has disappeared.

the instance resulting from the merging of two values, we can
find a solution to the original instance in linear time.

Proof: Let I be the original instance andI ′ the new instance
in which a,b have been merged into a new valuec. Clearly,
if I is satisfiable then so isI ′. It suffices to show that ifI ′

has a solutions which assignsc to x, thenI has a solution.
Let sa, sb be identical tos except thatsa assignsa to x and
sb assignsb to x. Suppose that neithersa nor sb are solu-
tions to I. Then, there are variablesy, z ∈ X \ {x} such
that 〈a, s(y)〉 /∈ Rxy and〈b, s(z)〉 /∈ Rxz. By definition of
the merging ofa, b to producec, and sinces is a solution
to I ′ containing〈x, c〉, we must have(b, s(y)) ∈ Rxy and
(a, s(z)) ∈ Rxz. Finally, (s(y), s(z)) ∈ Ryz sinces is a so-
lution to I ′. Hence,〈y, s(y)〉, 〈z, s(z)〉, 〈x, a〉, 〈x, b〉 forms
a broken-triangle, which contradicts our assumption. Hence,
the absence of broken triangles on assignments〈x, a〉, 〈x, b〉
allows us to merge these assignments while preserving satis-
fiability. Reconstructing a solution toI from a solutions to
I ′ simply requires checking which ofsa or sb is a solution to
I. 2

The BTP-merging operation is not only satisfiability-
preserving but, from Proposition 5, we know that we can also
reconstruct a solution in polynomial time to the original in-
stanceI from a solution to an instanceIm to which we have
applied a sequence of merging operations until convergence.
Indeed, we have the following stronger result[Cooperet al.,
2014].

Proposition 6 Let I be a binary CSP instance and suppose
that we are given the set of all solutions to the instanceIm

obtained after applying a sequence of BTP-merging opera-
tions. All N solutions toI can then be found inO(Nn2d)
time.

The weaker operation of neighbourhood substitution has
the property that two different convergent sequences of elim-
inations by neighbourhood substitution necessarily produce
isomorphic instancesIm

1 , Im
2 [Cooper, 1997]. This is not

the case for BTP-merging. Firstly, and perhaps rather sur-
prisingly, BTP-merging can have as a side-effect to eliminate
broken triangles. This is illustrated in the instance shown in
Figure 2. The instance in Figure 2(a) contains a broken tri-
angle on valuesa′, b′ for variablez, but after BTP-merging
of valuesa, b ∈ D(x) into a new valuec, as shown in Fig-
ure 2(b), there are no broken triangles in the instance. Sec-
ondly, BTP-merging of two values inD(x) can introduce a
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Figure 3: (a) This instance contains no broken triangle. (b)
After BTP-merging of valuesa andb in D(x), a broken tri-
angle has appeared on valuesa′, b′ ∈ D(z).

domain Ninst Nval Ndel Pdel

BH-4-13 6 7,334 3,201 44%
BH-4-4 10 674 322 48%
BH-4-7 20 2,102 883 42%
ehi-85 98 2,079 891 43%
ehi-90 100 2,205 945 43%
gr-col/school 8 4,473 104 2%
gr-col/sgb/book 26 1,887 534 28%
jobShop 45 6,033 388 6%
marc 1 6400 6,240 98%
os-taillard-4 30 2,932 1,820 62%
os-taillard-5 28 6,383 2,713 43%
rlfapGraphsMod 5 14,189 5,035 35%
rlfapScens 5 12,727 821 6%
rlfapScensMod 9 9,398 1,927 21%
others 1919 1,396 28 0.02%

Table 1: Results of experiments on CSP benchmark problems
(Ninst = no. instances,Nval = no. values,Ndel = no.
values deleted,Pdel = percentage deleted).

broken triangle on a variablez 6= x, as illustrated in Figure 3.
The instance in Figure 3(a) contains no broken triangle, but
after the BTP-merging ofa, b ∈ D(x) into a new valuec, a
broken triangle has been created on valuesa′, b′ ∈ D(z). In-
deed, it has been shown that finding an optimal sequence of
BTP-merges is NP-hard[Cooperet al., 2015].

3 Experimental trials
To test the utility of BTP-merging we performed extensive
experimental trials on benchmark instances from the Interna-
tional CP Competition1. For each binary CSP instance, we
performed BTP-mergings until convergence with a time-out
of one hour. In total, we obtained results for 2,547 instances
out of 3,811 benchmark instances within a time-out of one
hour.

Table 1 gives a summary of the results of the experimen-
tal trials. We do not include those instances which are en-
tirely solved by BTP-merging (such as all instances from the
benchmark-domainshanoi and domino , or all instances
from thepigeons benchmark-domain with a suffix-ord ).
We give details about those benchmark-domains where BTP-

1http://www.cril.univ-artois.fr/CPAI08

merging was most effective. All other benchmark-domains
are grouped together in the last line of the table. The table
shows the number of instances in the benchmark-domain, the
average number of values (i.e. variable-value assignments) in
the instances from this benchmark-domain, the average num-
ber of values deleted (i.e. the number of BTP-merging op-
erations performed) and finally this average represented as a
percentage of the average number of values.

We can see that for certain types of problem, BTP-merging
is very effective, whereas for others (last line of the table)
hardly any merging of values occurred. Runtime compar-
isons indicate that for BTP-merging to be useful in general-
purpose solvers, we need to develop efficient algorithms to
target those instances in which many merges are likely to oc-
cur [Cooperet al., 2016].

4 BTP-merging: arbitrary-arity constraints
In the remainder of the paper, we assume that the constraints
of a general-arity CSP instanceI are given in the form de-
scribed in Definition 2, i.e. as a set of incompatible tuples
NoGoods(I), where a tuple is a set of variable-value assign-
ments. For simplicity of presentation, we use the predicate
Good(I, t) which is true iff the tuplet is a partial solution,
i.e. t does not contain any pair of distinct assignments to the
same variable and@t′ ⊆ t such thatt′ ∈ NoGoods(I). We
first generalise the notion of broken triangle and merging to
the general-arity case.

Definition 7 A general-arity broken triangle(GABT) on val-
uesa, b ∈ D(x) consists of a pair of tuplest, u (containing
no assignments to variablex) satisfying:

1. Good(I, t ∪ u) ∧ Good(I, t ∪ {〈x, a〉}) ∧ Good(I, u ∪
{〈x, b〉})

2. t ∪ {〈x, b〉}, u ∪ {〈x, a〉} ∈ NoGoods(I)

The pair of valuesa, b ∈ D(x) is GABT-free if there is no
broken triangle ona, b.

Deciding whether a paira, b is GABT-free is polytime for
constraints given in extension (as the set of satisfying assign-
ments) as well as for those given by nogoods (the set of as-
signments violating the constraint).

Definition 8 Mergingvaluesa, b ∈ D(x) in a general-arity
CSP instanceI consists in replacinga, b in D(x) by a new
valuec which is compatible with all variable-value assign-
ments compatible with at least one of the assignments〈x, a〉
or 〈x, b〉, thus producing an instanceI ′ with the new set of
nogoods defined as follows:NoGoods(I ′) =

{t ∈ NoGoods(I) | 〈x, a〉, 〈x, b〉 /∈ t}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, a〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, b〉}}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, b〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, a〉}}

A value-merging conditionis a polytime-computable property
P (x, a, b) of assignments〈x, a〉, 〈x, b〉 in a CSP instanceI
such that whenP (x, a, b) holds, the instanceI ′ is satisfiable
if and only ifI is satisfiable.



This merging operation can be performed in polynomial
time whether constraints are represented positively in exten-
sion or negatively as nogoods. As in the binary case, absence
of general-arity broken triangles allows merging[Cooperet
al., 2014].

Proposition 9 In a general-arity CSP instanceI, being
GABT-free is a value-merging condition. Furthermore, given
a solution to the instance resulting from the merging of two
values, we can find a solution toI in linear time.

5 A tractable class of general-arity CSP
In binary CSP, the broken-triangle property defines an inter-
esting tractable class when broken-triangles are forbidden ac-
cording to a given variable ordering. Unfortunately, the orig-
inal definition of BTP was limited to binary CSPs[Cooperet
al., 2010]. Section 4 described a general-arity version of the
broken-triangle property whose absence on two values allows
these values to be merged while preserving satisfiability. An
obvious question is whether GABT-freeness can be adapted
to define a tractable class. We will see that this is possible for
a fixed variable ordering, but not if the ordering is unknown.

Definition 7 defined a general-arity broken triangle
(GABT). What happens if we forbid GABTs according to a
given variable ordering? Absence of GABTs on two values
a, b for the last variablex in the variable ordering allows us
to mergea and b while preserving satisfiability. It is pos-
sible to show that if GABTs are absent on all pairs of val-
ues forx, then we can merge all values in the domainD(x)
of x to produce a singleton domain. This is because merg-
ing a andb, to produce a merged valuec, cannot introduce
a GABT on c, d for any other valued ∈ D(x). Once the
domainD(x) becomes a singleton{a}, we can clearly elimi-
natex from the instance, by deleting〈x, a〉 from all nogoods,
without changing its satisfiability. It is at this moment that
GABTs may be introduced on other variables, meaning that
forbidding GABTs according to a variable ordering does not
define a tractable class.

Nevertheless, strengthening the general-arity BTP allows
us to avoid this problem. The resulting directional general-
arity version of BTP (for a known variable ordering) then de-
fines a tractable class which includes the binary BTP tractable
class as a special case.

We suppose given a total ordering< of the variables of
a CSP instanceI. We write t<x to represent the subset of
the tuplet consisting of assignments to variables occurring
beforex in the order<, andV ars(t) to denote the set of all
variables assigned byt.

Definition 10 A directional general-arity (DGA) broken tri-
angleon assignmentsa, b to variablex in a CSP instanceI
is a pair of tuplest, u (containing no assignments to variable
x) satisfying the following conditions:

1. t<x andu<x are non-empty

2. Good(I, t<x ∪ u<x) ∧ Good(I, t<x ∪ {〈x, a〉}) ∧
Good(I, u<x ∪ {〈x, b〉})

3. ∃t′ s.t. V ars(t′) = V ars(t) ∧ (t′)<x = t<x ∧
t′ ∪ {〈x, a〉} /∈ NoGoods(I)

4. ∃u′ s.t. V ars(u′) = V ars(u) ∧ (u′)<x = u<x ∧
u′ ∪ {〈x, b〉} /∈ NoGoods(I)

5. t ∪ {〈x, b〉}, u ∪ {〈x, a〉} ∈ NoGoods(I)

I satisfies thedirectional general-arity broken-triangle prop-
erty (DGABTP)according to the variable ordering< if no
directional general-arity broken triangle occurs on any pair
of valuesa, b for any variablex.

Any instanceI satisfying the DGABTP can be solved in
polynomial time by repeatedly alternating the following two
operations: (i) merge all values in the last remaining variable
(according to the order<); (ii) eliminate this variable when
its domain becomes a singleton. Both operations preserve
satisfiability and neither of them can introduce DGA broken
triangles[Cooperet al., 2014]. Moreover, the DGABTP can
be tested in polynomial time for a given order.

Theorem 11 A CSP instanceI satisfying the DGABTP on a
given variable ordering can be solved in polynomial time.

An important question is the tractability of testing the ex-
istence of a variable ordering for which a given instance sat-
isfies the DGABTP. Although this is polynomial-time for bi-
nary CSPs[Cooperet al., 2010], it turns out to be NP-hard
for general-arity CSPs[Cooperet al., 2014].

Theorem 12 Testing the existence of a variable ordering for
which a CSP instance satisfies the DGABTP is NP-complete.

6 Conclusion
This paper described a novel reduction operation for binary
CSP, called BTP-merging, which is strictly stronger than
neighbourhood substitution. Experimental trials have shown
that in several benchmark-domains applying BTP-merging
until convergence can significantly reduce the total number of
variable-value assignments. We gave a general-arity version
of BTP-merging and we then went on to define a general-arity
version of the tractable class defined by the broken-triangle
property for a known variable ordering.
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