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At first sight one could assume that the discipline of con-

straint programming has come of age. On the one hand, effi-
cient solvers are regularly used to solve real-world problem
in diverse application domains while, on the other hand, aric
theory has been developed concerning, among other thing
global constraints, tractable classes, reduction operations and’*¥?"
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Abstract

A binary CSP instance satisfying the broken-
triangle property (BTP) can be solved in polyno-
mial time. Unfortunately, in practice, few instances
satisfy the BTP. We show that a local version of the
BTP allows the merging of domain values in bi-
nary CSPs, thus providing a novel polynomial-time
reduction operation. Experimental trials on bench-
mark instances demonstrate a significant decrease
in instance size for certain classes of problems. We
show that BTP-merging can be generalised to in-
stances with constraints of arbitrary arity. A direc-
tional version of the general-arity BTP then allows
us to extend the BTP tractable class previously de-
fined only for binary CSP.
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(BTP) is a simple local condition on the coloured microstruc-
ture which defines a tractable class of binary §SBoper

et al, 2014d. Inspired by the BTP, investigation of other
forbidden patterns in the coloured microstructure has led to
the discovery of new tractable class[@:)henvet al, 2012;
Cooper and Escamocher, 2015; Cooper amnchy, 2012;

El Mouelhiet al, 2019 as well as new reduction operations
based on variable eliminatid€ohenet al, 2015.

For simplicity of presentation we use two different repre-
sentations of constraint satisfaction problems. In the binary
case, our notation is fairly standard, whereas in the general-
arity case we use a notation close to the representation of SAT
instances. This is for presentation only, though, and our algo-
rithms donotneed instances to be represented in this manner.

Definition 1 A binary CSP instancé consists of
e asetX ofn variables,
e adomainD(z) of values for each variable € X,

e arelationR,, C D(x) x D(y), for each pair of distinct
variablesz,y € X, which consists of the set of compat-
ible pairs of valuega, b) for variables(z, y).

,yr} C X is a set
(y1,a1), ..., (yr,ar)} such thatvi, j € [1,7], (a;,a;) €
A solutionto [ is a partial solution onX.

symmetry. The research reported in this paper is part of a For simplicity of presentation, Definition 1 assumes that
long-term project to bridge the gap between theory and pradghere is exactly one constraint relation for each pair of vari-
tice.

ables. An instancé is arc consistentf for each pair of dis-

Most research on tractable classes has been based BRCtvariablesr,y € X, for each value: € D(z), there is a

classes defined by placing restrictions either on the types ofalueb € D(y) such thafa, b) € Ryy. )

constraints or on the constraint hyper-graph whose vertices In our representation of general-arity CSP instances, we
are the variables and whose hyper-edges are the constrafi®quire the notion ofuplewhich is simply a set of variable-
scopes. Another way of defining classes of binary CSP invalue assignments. For example, in the binary case, the tuple
stances consists in imposing conditions on the microstructure,(z; a), (y, b)} is compatibleif (a,b) € R,, andincompati-

a graph whose vertices are the possible variable-value assighle otherwise.

ments with an edge linking each pair of compatible assignpefinition 2 A (general-arity) CSP instandeconsists of
ments[Jegou, 1993; Salamon and Jeavons, 2008 each

vertex of the microstructure, corresponding to a variable-

value assignmenfz, a), is labelled by the variable, then

this so-called coloured microstructure retains all informa-
tion from the original instance. The broken-triangle property
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e asetX ofn variables,
e a domainD(x) of values for each variable € X,
e a set NoGoodd|) consisting of incompatible tuples.

A partial solutionto 7 onY = {y1,...,y-} C X is a tuple

Martin ¢t = {{¥1,a1),..., (yr,ar)} such that no subset ofoelongs

to NoGoods{). A solutionis a partial solution onX.
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Figure 1: A broken triangle on two valuesb for a given  Figure 2: (a) A broken triangle exists on valugsd’ at vari-
variablez. ablez. (b) After BTP-merging of values andb in D(z), this

broken triangle has disappeared.
2 Value merging in binary CSP

In this section we consider a method, based on the BTP, idihe instance resulting from the merging of two values, we can
reducing domain size while preserving satisfiability. Insteadnd a solution to the original instance in linear time.
of eliminating a value, as in classic reduction operations suclProof: Let I be the original instance and the new instance
as arc consistency or neighbourhood substitution, we merg@ which a,b have been merged into a new valueClearly,
two values. We show that the absence of broken triangles oifi I is satisfiable then so if. It suffices to show that if’
two values for a variable in a binary CSP instance allows us has a solutiors which assigns to z, thenI has a solution.
to merge these two values in the domaincokvhile preserv-  Let s,, s, be identical tos except that,, assigns: to z and
ing satisfiability. This rule generalises the notion of virtual s, assignsh to . Suppose that neithey, nor s, are solu-
interchangeabilityLikitvivatanavong and Yap, 201&s well  tions toI. Then, there are variablesz € X \ {z} such
as neighbourhood substitutibRreuder, 19911 that (a, s(y)) ¢ R., and(b,s(z)) ¢ R,.. By definition of

Itis known that if for a given variable in an arc-consistent the merging ofa, b to producec, and sinces is a solution
binary CSP instancé, the set of (in)compatibilities (known to I’ containing(z, c), we must haveb, s(y)) € R, and
as a broken-triangle) shown in Figure 1 occurs for no two(a, s(z)) € R,.. Finally, (s(y),s(z)) € R,. sinces is a so-
valuesa,b € D(z) and no two assignments to two other lution to I’. Hence,(y, s(y)), (z,s(z)), (z,a), {x,b) forms
variables, then the variablecan be eliminated fronf with-  a broken-triangle, which contradicts our assumption. Hence,
out changing the satisfiability of [Cooperet al, 2010; the absence of broken triangles on assignménts), (x, b)
Cohenet al, 2019. In figures, each bullet represents a allows us to merge these assignments while preserving satis-
variable-value assignment, assignments to the same varialfi@bility. Reconstructing a solution tb from a solutions to
are grouped together within the same oval and compatiblé’ simply requires checking which @f, or s; is a solution to
(incompatible) pairs of assignments are linked by solid (bro-I. O "
ken) lines. Even when this variable-elimination rule cannot
be applied, it may be the case that for a given pair of values The BTP-merging operation is not only satisfiability-
a,b € D(x), no broken triangle occurs. We will show that preserving but, from Proposition 5, we know that we can also
if this is the case, then we can perform a domain-reductiomeconstruct a solution in polynomial time to the original in-
operation which consists in merging the valuesndb. stancel from a solution to an instancg™ to which we have
Definition 3 Merging valuesa, b € D(z) in a binary CSP applied a sequence of merging operations until convergence.
consists in replacing:, b in D(z) by a new value: which Indeed, we have the following stronger red@boperet al,
is compatible with all variable-value assignments compati—2014'
ble with at least one of the assignmeniisa) or (x,b). A  Proposition 6 Let I be a binary CSP instance and suppose
value-merging conditiors a polytime-computable property that we are given the set of all solutions to the instafte
P(x,a,b) of assignmentsz, a), (z,b) in a binary CSP in-  obtained after applying a sequence of BTP-merging opera-
stancel such that wherP(z, a, b) holds, the instancé’ ob-  tions. All N solutions tol can then be found i (Nn?d)
tained fromI by merginga,b € D(z) is satisfiable if and time.

only if I is satisfiable. The weaker operation of neighbourhood substitution has
We now formally define the value-merging condition basedthe property that two different convergent sequences of elim-
on the BTP. inations by neighbourhood substitution necessarily produce

isomorphic instanceg™, I3 [Cooper, 199} This is not

the case for BTP—merging. Firstly, and perhaps rather sur-
prisingly, BTP-merging can have as a side-effect to eliminate
broken triangles. This is illustrated in the instance shown in
Figure 2. The instance in Figure 2(a) contains a broken tri-
angle on valueg/, b’ for variablez, but after BTP-merging

of valuesa,b € D(z) into a new value, as shown in Fig-
Proposition 5 In a binary CSP instance, being BT-free is a ure 2(b), there are no broken triangles in the instance. Sec-
value-merging condition. Furthermore, given a solution toondly, BTP-merging of two values if(z) can introduce a

Definition 4 A broken triangleon the pair of variable-value
assignments, b € D(x) consists of a pair of assignments
d € D(y), e € D(z) to distinct variableg), = € X \ {z} such
that (a,d) ¢ Ry, (b,d) € Ryy, (a,€) € Ry, (be) ¢ Ry,
and(d,e) € R,.. The pair of values, b € D(z) is BT-free

if there is no broken triangle on, b.



merging was most effective. All other benchmark-domains
are grouped together in the last line of the table. The table
shows the number of instances in the benchmark-domain, the
average number of values (i.e. variable-value assignments) in
the instances from this benchmark-domain, the average num-
ber of values deleted (i.e. the number of BTP-merging op-
erations performed) and finally this average represented as a
percentage of the average number of values.

We can see that for certain types of problem, BTP-merging
Figure 3: (a) This instance contains no broken triangle. (b)s very effective, whereas for others (last line of the table)
After BTP-merging of values andb in D(z), a broken tri-  hardly any merging of values occurred. Runtime compar-

angle has appeared on valués € D(z). isons indicate that for BTP-merging to be useful in general-
purpose solvers, we need to develop efficient algorithms to
["domain [ Ninst | Noat | Naet | Paat | target those instances in which many merges are likely to oc-
BH-4-13 6| 7,334| 3201| 44% cur[Cooperet al, 2014.
BH-4-4 10 674 322 48% . . . .
BH-4-7 20| 2102| 883 42%(: 4 BTP-merging: arbitrary-arity constraints
ehi-85 98| 2,079 891 | 43% In the remainder of the paper, we assume that the constraints
ehi-90 100 | 2,205| 945| 43% of a general-arity CSP instandeare given in the form de-
gr-col/school 8| 4,473 104 2% scribed in Definition 2, i.e. as a set of incompatible tuples
gr-col/sgb/book 26| 1,887| 534 | 28% NoGoods{), where a tuple is a set of variable-value assign-
jobShop 45| 6,033| 388 6% ments. For simplicity of presentation, we use the predicate
marc 1 6400 | 6,240 | 98% Good(, t) which is true iff the tuplet is a partial solution,
os-taillard-4 30| 2,932| 1,820 62% i.e. t does not contain any pair of distinct assignments to the
os-taillard-5 28| 6,383| 2,713 | 43% same variable andt’ C t such thatt’ € NoGoods(). We
rifapGraphsMod 5] 14,189| 5,035| 35% first generalise the notion of broken triangle and merging to
rifapScens 51 12,727| 821 6% the general-arity case.
rIIﬁpScensMod 191% 2232 1'922g 0 %g;//" Definition 7 A general-arity broken trianggGABT) on val-
others ! s uesa,b € D(x) consists of a pair of tuples u (containing

no assignments to variablg satisfying:

Table 1: Results of experiments on CSP benchmark problems1. Good(, ¢ U u) A Good(,t U {(z,a)}) A Good(,u U
(Ninst = no. instances)N,, = no. values,N4; = no. {{z,0)})

values deletedP;.; = percentage deleted). 2. tU{(z,b)}, uU{(z,a)} € NoGoods()

) ) ) - The pair of values:i,b € D(x) is GABT-freeif there is no
broken triangle on a variable# z, as illustrated in Figure 3. proken triangle on, b.

The instance in Figure 3(a) contains no broken triangle, but . o . .

after the BTP-merging of, b € D(xz) into a new value:, a Decm_lmg wheth_er a pait, b is GABT-free is pqutl_me for _
broken triangle has been created on vakies’ € D(z). In- constraints given in extension (as the set of satisfying assign-
deed, it has been shown that finding an optimal sequence Gf€Nts) as well as for those given by nogoods (the set of as-

BTP-merges is NP-harCooperet al, 2015. signments violating the constraint).
Definition 8 Mergingvaluesa,b € D(x) in a general-arity
3 Experimental trials CSP instancd consists in replacing, b in D(z) by a new

value ¢ which is compatible with all variable-value assign-
ments compatible with at least one of the assignménts)

or {x, by, thus producing an instancE with the new set of
tnogoods defined as followSYoGoods(I') =

To test the utility of BTP-merging we performed extensive
experimental trials on benchmark instances from the Intern
tional CP Competitioh For each binary CSP instance, we
performed BTP-mergings until convergence with a time-ou
of one hour. In total, we obtained results for 2,547 instances {t € NoGoods(I) | (x,a), (x,b) ¢ t}
out of 3,811 benchmark instances within a time-out of one U {tU{{z,&)} | tU{(z,a)} € NoGoods(I) A
hour. , ,

Table 1 gives a summary of the results of the experimen- 3t" € NoGoods(I) s.t. ' S t U {{z,b)}}
tal trials. We do not include those instances which are en- U {tU{(z,¢)} | t U {(z,b)} € NoGoods(I) A
tirely solved by BTP-merging (such as all instances from the 3t" € NoGoods(I) s.t. ' CtU{(z,a)}}
benchmark-domainkanoi and domino , or all instances ) o )
from thepigeons benchmark-domain with a suffsord ). Avalue-merging conditiois a polytime-computable property

We give details about those benchmark-domains where BTRZ (7, a, b) of assignmentsz, a), (z,b) in a CSP instance
- such that wherP(z, a, b) holds, the instancé’ is satisfiable
http://www.cril.univ-artois.fr/CPAIO8 if and only if I is satisfiable.



This merging operation can be performed in polynomial 4. 3u’ s.t. Vars(uv') = Vars(u) A (u/)<% = u~* A
time whether constraints are represented positively in exten-  «' U {(z,b)} ¢ NoGoods()
sion or negatively as nogoods. As in the binary case, absenc
of general-arity broken triangles allows mergif@ooperet %. 1u {(z,0)}, wU{(z,a)} € NoGoods()
al., 2014. 1 satisfies thelirectional general-arity broken-triangle prop-
erty (DGABTP)according to the variable ordering: if no
directional general-arity broken triangle occurs on any pair
of valuesa, b for any variablezx.

Proposition 9 In a general-arity CSP instancd, being
GABT-free is a value-merging condition. Furthermore, given
a solution to the instance resulting from the merging of two

values, we can find a solution fain linear time. Any instancel satisfying the DGABTP can be solved in
polynomial time by repeatedly alternating the following two
5 A tractable class of general-arity CSP operations: (i) merge all values in the last remaining variable

) ) ] ~ (according to the ordex); (ii) eliminate this variable when
In binary CSP, the broken-triangle property defines an interits domain becomes a singleton. Both operations preserve
esting tractable class when broken-triangles are forbidden agatisfiability and neither of them can introduce DGA broken
cording to a given variable ordering. Unfortunately, the orig-triangles[Cooperet al, 2014. Moreover, the DGABTP can
inal definition of BTP was limited to binary CSIP@OOperet be tested in p0|ynomia| time for a given order.
al., 2014. Section 4 described a general-arity version of the ) .
broken-triangle property whose absence on two values allowsheorem 11 A CSP instancé satisfying the DGABTP on a
these values to be merged while preserving satisfiability. Adiven variable ordering can be solved in polynomial time.

obvious question is whether GABT-freeness can be adapted an important question is the tractability of testing the ex-

to define a tractable class. We will see that this is possible fofstence of a variable ordering for which a given instance sat-
a fixed variable ordering, but not if the ordering is unknown. jsfies the DGABTP. Although this is polynomial-time for bi-

Definition 7 defined a general-arity broken triangle nary CSP4Cooperet al, 2014, it turns out to be NP-hard
(GABT). What happens if we forbid GABTSs according to a for general-arity CSPECooperet al., 2014.

given variable ordering? Absence of GABTs on two values . . . .
a, b for the last variable: in the variable ordering allows us | heorem 12 Testing the existence of a variable ordering for
to mergea and b while preserving satisfiability. It is pos- which a CSP instance satisfies the DGABTP is NP-complete.

sible to show that if GABTs are absent on all pairs of val-

ues forz, then we can merge all values in the domaifw) 6 Conclusion
of x to produce a singleton domain. This is because mer
ing a andb, to produce a merged value cannot introduce
a GABT onc,d for any other valuel € D(x). Once the
domainD(z) becomes a singletofu }, we can clearly elimi-
natex from the instance, by deleting;, a) from all nogoods,

YT his paper described a novel reduction operation for binary
CSP, called BTP-merging, which is strictly stronger than
neighbourhood substitution. Experimental trials have shown
that in several benchmark-domains applying BTP-merging

without changing its satisfiability. It is at this moment that until convergence can significantly reduce the total number of

GABTs may be introduced on other variables, meaning tha2/lable-value assignments. We gave a general-arity version
! of BTP-merging and we then went on to define a general-arity

Logmid;nga%g%;?c?ggg rding to a variable ordering does notversion of the tractable class defined by the broken-triangle
Nevertheless, strengthening the general-arity BTP allowgroperty for a known variable ordering.

us to avoid this problem. The resulting directional general-

arity version of BTP (for a known variable ordering) then de- References
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