
Constraints manuscript No.
(will be inserted by the editor)

On a new extension of BTP for binary CSPs

Achref El Mouelhi

Received: date / Accepted: date

Abstract The study of broken-triangles is becoming increasingly ambitious, by both
solving constraint satisfaction problems (CSPs) in polynomial time and reducing
search space size through either value merging or variable elimination. Consid-
erable progress has been made in extending this important concept, such as dual
broken-triangle and weakly broken-triangle, in order to maximize the number of
captured tractable CSP instances and/or the number of merged values. Specifically,
m-wBTP allows us to merge more values than BTP. DBTP, ∀∃-BTP, k-BTP, WBTP and
m-wBTP permit us to capture more tractable instances than BTP. However, except
BTP, none of these extensions allows variable elimination while preserving satisfia-
bility. Moreover, k-BTP andm-wBTP define bigger tractable classes around BTP but
both of them generally need a high level of consistency.

Here, we introduce a new weaker form of BTP, calledm-fBTP for flexible broken-
triangle property, which will represent a compromise between most of these previ-
ous tractable properties based on BTP. m-fBTP allows us on the one hand to elimi-
nate more variables than BTP while preserving satisfiability and on the other to de-
fine a new bigger tractable class for which arc consistency is a decision procedure.
Likewise, m-fBTP permits to merge more values than BTP but fewer than m-wBTP.
The binary CSP instances satisfying m-fBTP are solved by algorithms of the state-
of-the-art like MAC and RFL in polynomial time. An open question is whether it
is possible to compute, in polynomial time, the existence of some variable ordering
for which a given instance satisfies 1-fBTP.

1 Introduction

A wide range of real-life problems issue from Artificial Intelligence (AI) and Oper-
ational Research (OR) like spatial and temporal planning, scheduling and config-
uration can be expressed as a binary Constraint Satisfaction Problems (CSPs [1]). A
binary CSP consists of a set of variables X, each one has a finite set of values called

A. El Mouelhi
Marseille 13015, France
E-mail: {elmouelhi.achref}@gmail.org

domain D, and a finite set of constraints C. Each constraint is defined over a pair of
variables and represents a set of valid assignment of values to these two variables,
involved by the constraint. A solution to a CSP instance is an assignment of value to
each variable satisfying all the constraints. Checking whether a given CSP instance
has a solution is known to be NP-complete.

In general, the main techniques to achieve this task are based on backtracking
algorithms, whose worst-case time complexity is O(edn) where e, n and d are the
number of constraints, the number of variables and the maximum domain size,
respectively. In order to reduce this exponential time complexity, many different
approaches have been proposed. The first one, called filtering by consistency, consists
of removing inconsistent values [2], values which cannot take part in any solution.
Obviously this approach leaves the set of solutions unchanged. The second relies
on merging values (consistent or inconsistent), satisfying some conditions, without
affecting the existence of a solution [3,4,5,6]. The last eliminates variables [7,8] or
constraints [9] while preserving the satisfiability of the instance.

In a somewhat orthogonal direction, much research has been devoted to iden-
tifying tractable classes. In the literature, several tractable classes have been defined
but the Broken-Triangle Property (BTP [10,11]) still remains at the heart of this re-
search area. This property has some interesting characteristics from a solving view-
point as well as reduction operations viewpoint. Indeed, BTP is not only defined
for solving CSP in polynomial time, but also for reducing the size of CSP instances
while preserving satisfiability. Specifically, the absence of broken-triangles has led,
under some conditions, to variable elimination [7,8] or domain reduction by value
merging [5,6] while preserving satisfiability.

More recently, it has been proved that the presence of certain broken-triangles
does not necessarily preclude defining tractable classes [12,13,14,15,16,17,18,19]
and/or merging values [19]. For example, ETP [16] and more generally k-BTP [17]
authorises some broken-triangles and defines larger tractable classes than BTP but
does not permit value merging. Likewise, m-wBTP [19] does not forbid all broken-
triangles and defines a maximal value-merging condition. Unfortunately, none of
them allow variable elimination (see [19]) although the initial definition of BTP per-
mits it [8]. Moreover, k-BTP seems to be unusable beyond k = 3 and m-wBTP ap-
pears to be inexploitable when m > 2 because of the level of consistency required.

The main contribution of this work is providing a new weaker-form of BTP,
called m-fBTP, which allows value merging, variable elimination and defines a new
hybrid tractable class for which arc consistency is a decision procedure. The results
proven in this paper also provide theoretical insight into the relationship between
m-fBTP and some others previous extension of BTP.

So, our paper will be organised as follows: Section 2 recalls some definitions and
notations. In section 3, we introduce the flexible broken-triangle property. Next, we
show thatm-fBTP is a maximal variable-elimination condition. Section 5 proves that
m-fBTP instances defines a tractable class which can be efficiently solved by algo-
rithms of the state-of-the-art like MAC [20] and RFL [21]. In section 6, we compare
m-fBTP to some known tractable classes like DBTP, ∀∃-BTP [13], k-BTP, m-wBTP
and WBTP [18]. After, we experimmentally show the existence of our patterns in
benchmark problems of the CSP competition 2008. Finally we give a discussion
and perspective for future work. Some results of this paper first published in [22].

2

2 Formal background

Constraint satisfaction problems constitute an important tool for modeling and
solving many different practical problems in Artificial Intelligence and Operations
Research. A non-binary CSP instance, also called n-ary, is defined as below:

Definition 1 (CSP instance) A CSP instance is a pair I = (X,C) with:

• X: a set of n variables denoted by {x1, ..., xn}. Each variable xi has a domain
D(xi) containing at most d values.

• C: a set of e constraints. Each constraint Ci is a pair (Scp(Ci), Rel(Ci)) where:
• Scp(Ci) = {xi1 , ..., xiai } ⊆ X, is the scope of Ci,
• Rel(Ci) ⊆ D(xi1)× ...×D(xiai), is the associated relation.

Recall that any non-binary CSP instance can be converted into an equivalent
binary instance by using dual encoding or hidden-variable transformation[23,24].
In this paper, we consider only binary CSP instances, defined formally as follows:

Definition 2 (Binary CSP instance) A binary CSP instance is a pair I = (X,C)
with:

• X: a set of n variables denoted by {x1, ..., xn}. Each variable xi has a domain
D(xi) containing at most d values.

• C: a set of e binary constraints. Each binary constraint Cij (with i 6= j) is a pair
(Scp(Cij), Rel(Cij)) where:
• Scp(Cij) = {xi, xj} ⊆ X, is the scope of Cij , i.e. a set of two variables in-

volved by the constraint.
• Rel(Cij) ⊆ D(xi)×D(xj), is the associated relation, a set of compatible pair

of values called tuples.

If the constraint Cij is not defined in C, then we consider Cij to be a universal
constraint (i.e. such that Rel(Cij) = D(xi)×D(xj)).

Given a binary CSP instance I = (X,C), an assignment of values to Y ⊆ X

is a set of pairs {(xi, vi) | xi ∈ Y } with vi ∈ D(xi) and 1 ≤ i ≤ n, denoted
generally (v1, ...vk). A partial solution of Y = {x`1 , . . . , x`m} is an assignment A =
(v`1 , . . . , v`m) ∈ D(x`1) × . . . × D(x`m) which satisfies all constraints Cij such that
{xi, xj} ⊆ Y . A partial solutionA is said to be complete solution (or solution for short)
if Y = X i.e. if

• A contains a value to each variable in X
• no pair of values of A violates any constraint of C

Given a CSP instance I, deciding whether I has a solution is well known to
be NP-complete even for binary CSPs. Neverthless, there are some cases for which
solving can be realized in polynomial time. In this case we speak about tractable
classes. For example, BTP (for Broken-Triangle Property [11]) represents an important
tractable class from a solving viewpoint as well as reduction operations viewpoint.
BTP requires the absence of broken-triangles with respect to a given variable order-
ing. Formally, it is defined as follows:

Definition 3 (Broken-Triangle Property [10,11]) Given a binary CSP instance I

with a variable order <. A pair of values v′k, v
′′
k ∈ D(xk) satisfies BTP if, for each

pair of variables (xi, xj) (with i 6= j 6= k) such that, ∀vi ∈ D(xi), ∀vj ∈ D(xj), if

3

• (vi, vj) ∈ Rel(Cij),
• (vi, v

′
k) ∈ Rel(Cik) and

• (vj , v
′′
k) ∈ Rel(Cjk),

then

• either (vi, v′′k) ∈ Rel(Cik)
• or (vj , v′k) ∈ Rel(Cjk).

A variable xk satisfies BTP if each pair of values in D(xk) satisfies BTP. The instance
I satisfies BTP with respect to < if for all variables xk, xk satisfies BTP in the sub-
instance of I on variables xi ≤ xk.

If (vi, v′′k) /∈ Rel(Cik) and (vj , v
′
k) /∈ Rel(Cjk), we say that (v′k, vi, vj , v

′′
k) constitute a

broken-triangle on the values v′k and v′′k (or more generally on xk).

vi

v′′k

v′k

vj

xi xk

xj

vi

v′′k

v′k

vj

xi xk

xj

(a) (b)

Fig. 1 The assignments (v′k, vi, vj , v
′′
k) form a broken-triangle in (a) but do not in (b).

Graphically, BTP can be represented in the micro-structure1 [25] of I as shown
in Figure 1. For each pair of values (vi, vj) (with vi ∈ D(xi), vj ∈ D(xj) and i 6= j),
a solid line will be used to connect vi and vj if they are compatible (i.e. (vi, vj) ∈
Rel(Cij)), a dotted line if they are incompatible (i.e. (vi, vj) /∈ Rij), or no line if
(vi, vj) is an undefined tuple (i.e. a tuple which can be valid or invalid).

Considering the variable ordering xi < xj < xk, the CSP instance of Figure 1(a)
is not BTP because of the incompatibility of (vj , v′k) and (vi, v

′′
k). Thus, (v′k, vi, vj , v

′′
k)

constitute a broken-triangle. In Figure 1(b), (vi, v′′k) ∈ Rel(Cik) and (vj , v
′
k) ∈ Rel(Cjk),

then the BTP is satisfied. The set of binary CSP instances which satisfy BTP consti-
tutes a tractable class solved by enforcing Arc Consistency.

Definition 4 [2] Given a binary CSP instance I = (X,C), a value vi ∈ D(xi) is arc-
consistent with respect to Cij ∈ C if and only if there exists a value vj ∈ D(xj) such
that (vi, vj) ∈ Rel(Cij). A domain D(xi) is arc-consistent with respect to Rel(Cij) if
and only of ∀vi ∈ D(xi), the value vi is arc-consistent with respect to Rel(Cij), and

1 Given a binary CSP instance I = (X,C), the micro-structure of I is the undirected graph µ(I) =
(V,E) with:

• V = {(xi, vi) : xi ∈ X, vi ∈ D(xi)},
• E = { {(xi, vi), (xj , vj)} | i 6= j, Cij /∈ C or Cij ∈ C, (vi, vj) ∈ Rel(Cij)}

4

the binary CSP instance I is arc-consistent if and only if ∀xi ∈ X, the domain D(xi)
is arc-consistent with respect to all Rel(Cij) such that Cij ∈ C .

Enforcing arc consistency consists of removing any value that is not arc-consistent.
After enforcing arc consistency, if no domain has been wipped out, the binary CSP
instance is consistent otherwise it is inconsistent. We have to mention that enforcing
arc consistency preserves equivalence (and also satisfiability)

We now define value merging and variable elimination operations.

Definition 5 [5,6] Merging the values v′k, v
′′
k ∈ D(xk) in a binary CSP instance I

consists of replacing v′k, v
′′
k ∈ D(xk) by a new value vk which is compatible with all

values which are compatible with either v′k or v′′k . A value-merging condition is a
polytime-computable property such that when it holds on a pair of values v′k, v

′′
k ∈

D(xk), the instance obtained after merging the values v′k and v′′k is satisfiable if and
only if I was satisfiable.

Definition 6 [7,8] Eliminating a variable xk in a binary CSP instance I = (X,C)
consists of replacing X by X \ {xk} and C by C \ {Cik ∈ C | i 6= k}. A variable-
elimination condition is a polytime-computable property such that when it holds
on a variable xk, the instance obtained after eliminating xk is satisfiable if and only
if I was satisfiable.

In [8], it has been shown that if there is no broken-triangle on each pair of values
of a given variable xk in an arc-consistent binary CSP instance I, then xk can be
eliminated from I without changing the satisfiability. For example, the variable xk
of Figure 1(b) can be eliminated while preserving satisfiability, contrary to xk of
Figure 1(a).

In [6], the authors have proved that even when this rule cannot be applied be-
cause of the presence of some broken-triangles, it is possible that there is a pair of
values v′k, v

′′
k in D(xk) which satisfies BTP. In this case, these two values are merge-

able. For example, in Figure 1(b), the values v′k and v′′k are mergeable.
More recently, [19] showed that even when some broken-triangles are present

on a pair of values v′k, v
′′
k which satisfies m-wBTP, merging v′k and v′′k does not affect

the satisfiability. Formally, m-wBTP is defined as follows:

Definition 7 (Weakly Broken-Triangle Property [19]) A pair of values v′k, v
′′
k ∈

D(xk) satisfies m-wBTP where m ≤ n − 3 if for each broken-triangle (v′k, vi, vj , v
′′
k)

with vi ∈ D(xi) and vj ∈ D(xj), there is a set of r ≤ m support variables {x`1 , . . . , x`r} ⊆
X\{xi, xj , xk} such that for all (v`1 , . . . , v`r) ∈ D(x`1)×. . .×D(x`r), if (v`1 , . . . , v`r , vi, vj)
is a partial solution, then there is α ∈ {1, . . . , r} such that (v`α , v

′
k), (v`α , v

′′
k) /∈

Rel(C`αk).

Graphically, this definition can be represented through the micro-structure graph
of Figure 2. The pair v′k, v

′′
k satisfies 1-wBTP because the value v` in D(x`) is com-

patible with both vi and vj but is not with v′k and v′′k . So we say that the assignments
(v′k, vi, vj , v

′′
k) forms a weakly broken-triangle which is supported by x`.

m-wBTP was designed primarily to merge a maximum number of values. This
property seems to be very weak and it may be for this reason that it does not allow
variable elimination (contrary to BTP) and it requires a high level of filtering by
consistency to be polynomial. So, next section introduces the flexible broken-triangle
concept which allows merging value and variable elimination while preserving sat-
isfiability. Likem-wBTP, this new property will use the support variable concept but
in a more restrictive way.

5

v`
v′′k

v′k

vj

vi

x` xk

xj

xi

Fig. 2 A weakly broken-triangle (v′k, vi, vj , v
′′
k) since (v′k, v`), (v

′′
k , v`) /∈ Rel(Ck`).

3 Flexible broken-triangles

A total absence of broken-triangles on a given variable in an arc-consistent CSP in-
stance allows us to eliminate it without changing the satisfiability of the instance. In
contrast, a total absence of weakly broken-triangles does not permit variable elimi-
nation.

v`

v′`
v′′k

v′k

vj

vi

x`

xk

xj

xi

Fig. 3 The dashed variable xk can be eliminated despite the presence of a broken-triangle.

Theoretically, we can define many examples of variables which can be elimi-
nated despite the presence of certain broken-triangles while preserving satisfiabil-
ity. As shown in the inconsistent CSP instance of Figure 3, there is a broken-triangle
on v′k and v′′k , but after eliminating xk this CSP instance still remains inconsistent.
So, the presence of some broken-triangle on a given variable does not preclude vari-
able elimination while preserving satisfiability. For this, we introduce the flexible
broken-triangles.

6

3.1 1-fBTP

Similar to m-wBTP, the m-fBTP is based on the concept of variable support. We
begin by formally defining the simplest case (i.e. when m = 1).

Definition 8 A pair of values v′k, v
′′
k ∈ D(xk) satisfies 1-fBTP if for each broken-

triangle (vi, vj , v′k, v
′′
k) with vi ∈ D(xi), vj ∈ D(xj), then there is at least one variable

x` ∈ X \ {xi, xj , xk} such that ∀ v` ∈ D(x`), if (vi, v`) ∈ Rel(Ci`) then (vj , v`) /∈
Rel(Cj`). If this is the case, (v′k, vi, vj , v

′′
k) is known as a flexible broken-triangle

supported by the variable x`. A variable xk ∈ X satisfies 1-fBTP if each pair of
values v′k, v

′′
k ∈ D(xk) satisfies 1-fBTP.

In other words, each value in D(x`) cannot be compatible with both vi and vj
at the same time. If there is no variable x` which satisfies the previous conditions,
then the pair v′k, v

′′
k does not satisfy 1-fBTP and (v′k, vi, vj , v

′′
k) will be called purely

broken-triangle.
We specify that the broken-triangle in Figure 3 is flexible because it is supported

by the variable x` ((vi, v`) ∈ Rel(Ci`), (vj , v′`) ∈ Rel(Cj`), (vj , v`) /∈ Rel(Cj`) and
(vi, v

′
`) /∈ Rel(Cj`)).

We can intuitively deduce the following proposition:

Proposition 1 In a binary CSP instance I = (X,C), if a pair v′k, v
′′
k ∈ D(xk) satisfies

1-fBTP, then it also satisfies 1-wBTP.

Proof Straightforward. Indeed, to be 1-fBTP, we must have for each broken-triangle
on v′k and v′′k at least a support variable x` (for 1-fBTP) such that, each value v` in
D(x`) is not compatible with both vi and vj at the same time. Thus, we do not have
to check the compatibility of v` with v′k and v′′k because x` is also a support variable
for 1-wBTP. Finally, the pair v′k, v

′′
k ∈ D(xk) also satisfies 1-wBTP. ut

The converse is obiously false by means of Figure 2 where the pair (v′k, v
′′
k) is

1-wBTP but is not 1-fBTP.
We immediately obtain the following result from Proposition 1 since m-wBTP

allows value merging.

Corollary 1 In a binary CSP instance I = (X,C), merging a pair of values v′k, v
′′
k ∈

D(xk) which satisfies 1-fBTP does not change the satisfiability of an instance.

In the rest of this subsection, support variable will refer to fBTP.
It is known that if for a given variable xk in an arc-consistent binary CSP in-

stance I, the set of broken-triangles does not contain any pair of values v′k, v
′′
k in

D(xk) with two assignments to two other variables, then the variable xk can be
eliminated from I without modifying the satisfiability of I [8]. A similar result can
also be shown for the variables satisfying 1-fBTP. To do it, we should prove the
following lemma:

Lemma 1 Given a variable xk which satisfies 1-fBTP, after merging a pair of values v′′k , v
′′′
k ∈

D(xk) into a new value v′k, no purely broken-triangle can appear on xk.

Proof We assume, for a contradiction, that after merging a pair of values v′′k , v
′′′
k of a

variable xk which satisfies 1-fBTP into a new value v′k, we introduced a new purely
broken-triangle (vk, vi, vj , v

′
k). This can be translated into the following relations:

7

• (1) (vi, vj) ∈ Rel(Cij),
• (2) (vi, vk) ∈ Rel(Cik),
• (3) (vj , v′k) ∈ Rel(Cjk),
• (4) (vj , vk) /∈ Rel(Cjk) and
• (5) (vi, v′k) /∈ Rel(Cik).

By definition 5, we also have:
(5)⇒
• (vi, v

′′
k) /∈ Rel(Cik) (a) and

• (vi, v
′′′
k) /∈ Rel(Cik) (b).

(3)⇒
• either (vj , v′′k) ∈ Rel(Cjk) (c)
• or (vj , v′′′k) ∈ Rel(Cjk) (d).

(2), (1), (c), (a), and (4) ⇒ a broken-triangle (vi, vj , vk, v
′′
k) and (2), (1), (d), (b) and

(4) ⇒ a broken-triangle (vk, vi, vj , v
′′′
k). In both cases, we had at least one broken-

triangle before merging v′′k and v′′′k . So, there is at least one variable x` such that for
each value v` ∈ D(x`), if (vi, v`) ∈ Rel(Ci`) then (vj , v`) /∈ Rel(Cj`). In this way, the
variable x` also supports the broken-triangle (vk, vi, vj , v

′
k). Thus, (vk, vi, vj , v′k) is

not a purely broken-triangle. But this contradicts our initial assumption. Therefore,
merging two values v′′k , v

′′′
k in the domain of a variable xk which satisfies 1-fBTP

does not introduce a purely broken-triangle. ut
We now establish the link with the variable elimination.

Theorem 1 Given an arc-consistent CSP instance I = (X,C), if a variable xk ∈ X

satisfies 1-fBTP, then it can be eliminated from I while preserving satisfiability.

Proof Given an arc-consistent CSP instance I = (X,C) and a variable xk ∈ X which
satisfies 1-fBTP. As value merging makes no empty domain, we will merge each
pair of values in D(xk) until we obtain a unique value since (thanks to Lemma 1)
merging a pair of values does not introduce a new purely broken-triangle on xk. As
I is arc-consistent, so any consistent assignmentA toX\{xk} can be easily extended
to xk because D(xk) contains a unique value and each value A[xi] has a support in
D(xk). So, the unique value in D(xk) is compatible with each value in A. Thus, xk
can be eliminated without changing the satisfiability of I. ut

Like the majority of BTP extensions, the principle of support variable introduced
for flexible broken-triangles can be expanded to more than one variable. This will
allows us to capture more variables that can be eliminated in binary CSP instances
and to define a maximal variable-elimination condition.

3.2 m-fBTP

We now enlarge the definition of flexible broken-triangle property by using m sup-
port variables. These variables guarantee the incompatibility of at least one of their
value with at least one of two values vi and vj of the broken trinagle on xk. From a
micro-structure viewpoint, these variables prevent the emergence of a new clique2

which did not exist previously (as shown in figure 4).
We begin by formally defining m-fBTP.

2 A complete subgraph where each pair of vertices are connected.

8

v′′k

v′k

vj

v`β

vi

v`γ

xk

xj

xi

x`β

x`γ

(a)

v′′k

v′k

vj

v′`β

v′′`β

vi

v′`γ
v′′`γ

xk

xj

xi

x`β

x`γ

(b)

v′′k

v′k

vj

v′`β

v′′`β

vi

v′`γ
v′′`γ

vi

xk

xj

xi

x`β

x`γ

(c)

Fig. 4 Three different cases of two values v′k and v′′k which satisfy 2-fBTP.

Definition 9 A pair of values v′k, v
′′
k ∈ D(xk) satisfies m-fBTP where m ≤ n − 3

if for each broken-triangle (v′k, vi, vj , v
′′
k) with vi ∈ D(xi) and vj ∈ D(xj), there is

a set of r ≤ m support variables {x`1 , . . . , x`r} ⊆ X \ {xi, xj , xk} such that for all
partial solution (v`1 , . . . , v`r) ∈ D(x`1) × . . . × D(x`r), there is α ∈ {1, . . . , r} such
that if (v`α , vi) ∈ Rel(C`αi), then (v`α , vj) /∈ Rel(C`αj). In this case, we say that

9

(v′k, vi, vj , v
′′
k) is a flexible broken-triangle. A variable xk ∈ X satisfies m-fBTP if

each pair of values v′k, v
′′
k ∈ D(xk) satisfies m-fBTP.

As for 1-fBTP, if there is no set of m support variables which satisfies the previ-
ous conditions, then we will say that (v′k, vi, vj , v

′′
k) is a purely broken-triangle.

Three different configurations of Definition 9 are given in Figure 4. In (a), there
is no partial solution on the set of variables {x`β , x`γ}. Hence v′k, v

′′
k in D(xk) clearly

satisfies 2-fBTP. In (b), the pair of values v′k, v
′′
k in D(xk) satisfies 2-fBTP because for

the two partial solutions (v′`β , v
′
`γ
) and (v′′`β , v

′′
`γ
), we have (v′`γ , vj) /∈ Rel(C`γj) and

(v′′`β , vi) /∈ Rel(C`βi). In (c), the pair of values v′k, v
′′
k in D(xk) also satisfies 2-fBTP

because for the two partial solutions (v′`β , v
′
`γ
) and (v′′`β , v

′′
`γ
), we have (v′`γ , vj) /∈

Rel(C`γj) and (v′′`γ , vi) /∈ Rel(C`γi). Obviously, these three examples are unsolvable
(inconsistent). But it is possible to make them consistent by adding new solutions
whose values are completely disjoint with the values present in the examples. Un-
fortunately, this will make the figures too dense and difficult to understand.

Note that in Figure 4 (c), the variable x`γ alone supports the broken-triangle
(v′k, vi, vj , v

′′
k), so we can deduce that x`γ and x`β together support it. In Figure 4

(a) and (b), x`γ and x`β together support the broken-triangle (v′k, vi, vj , v
′′
k) none of

them alone support it. From this, one can easily deduce the following result:

Proposition 2 Given a binary CSP instance I = (X,C), if a pair of values v′k, v
′′
k ∈

D(xk) satisfies m-fBTP then it satisfies (m+ 1)-fBTP (0 ≤ m ≤ n− 4).

We now generalise Proposition 1 to any pair of values satisfying m-fBTP.

Proposition 3 In a binary CSP instance I = (X,C), ∀m, 0 ≤ m ≤ n − 4, if a pair
v′k, v

′′
k ∈ D(xk) satisfies m-fBTP, then it also satisfies m-wBTP.

Proof For each broken-triangle on v′k, v
′′
k , there is a set of r ≤ m (with 0 ≤ m ≤

n − 3) support variables {x`1 , . . . , x`r} ⊆ X \ {xi, xj , xk} such that for all partial
solution (v`1 , . . . , v`r) ∈ D(x`1) × . . . × D(x`r), there is α ∈ {1, . . . , r} such that if
(v`α , vi) ∈ Rel(C`αi), then (v`α , vj) /∈ Rel(C`αj). So each value v`α in D(x`α) cannot
be compatible with vi and vj at the same time. Thus, there can be no partial solution
(v`1 , . . . , v`r). As a result, the pair v′k, v

′′
k ∈ D(xk) also satisfies m-wBTP. ut

Corollary 2 In a binary CSP instance I = (X,C), merging a pair of values v′k, v
′′
k ∈

D(xk) which satisfies m-fBTP does not change the satisfiability of I.

If we denote by m-fBTP-merging the merging operation based on m-fBTP, we
can deduce that 0-wBTP-merging [19] and 0-fBTP-merging correspond to BTP-merging
defined in [6] since they are based on zero support variables. Since BTP-merging
generalises both neighbourhood substitution [3] and virtual interchangeability [4]
and m-fBTP-merging generalises BTP-merging for all m ≥ 0, we immediately ob-
tain the following results:

Corollary 3 m-fBTP-merging generalises neighbourhood substitution and virtual inter-
changeability.

Corollary 4 m-fBTP-merging merges more values than BTP-merging and less than m-
wBTP-merging.

10

It is known that if a given variable xk in an arc-consistent binary CSP instance I
satisfies BTP then xk can be eliminated without modifying the satisfiability of I [8].
A similar result can also be shown for the variables satisfying m-fBTP. To do it, we
should prove the following lemma:

Lemma 2 Given a variable xk which satisfies m-fBTP, after merging a pair of values
v′′k , v

′′′
k ∈ D(xk) into a new value v′k, no purely broken-triangle can appear on xk.

Proof We assume, for a contradiction, that after merging a pair of values v′′k , v
′′′
k of a

variable xk which satisfiesm-fBTP into a new value v′k, we introduced a new purely
broken-triangle (vk, vi, vj , v

′
k). So we have:

• (1) (vi, vj) ∈ Rel(Cij),
• (2) (vi, vk) ∈ Rel(Cik),
• (3) (vj , v′k) ∈ Rel(Cjk),
• (4) (vj , vk) /∈ Rel(Cjk) and
• (5) (vi, v′k) /∈ Rel(Cik).

By definition 5, we obtain:
• (vi, v

′′
k) /∈ Rel(Cik) (a),

• (vi, v
′′′
k) /∈ Rel(Cik) (b), and

• either (vj , v′′k) ∈ Rel(Cjk) (c) or (vj , v′′′k) ∈ Rel(Cjk) (d).
(2), (1), (c), (a), and (4)⇒ a broken-triangle (vk, vi, vj , v

′′
k) and (2), (1), (d), (b) and

(4) ⇒ a broken-triangle (vk, vi, vj , v
′′′
k). In both cases, we had at least one broken-

triangle before merging v′′k and v′′′k . So, there is a set of r ≤ m support variables
{x`1 , . . . , x`r} ⊆ X \ {xi, xj , xk} such that for all partial solution (v`1 , . . . , v`r) ∈
D(x`1) × . . . × D(x`r), there is α ∈ {1, . . . , r} such that if (v`α , vi) ∈ Rel(C`αi),
then (v`α , vj) /∈ Rel(C`αj). In this way, the set of r support variables {x`1 , . . . , x`r}
also support the broken-triangle (vk, vi, vj , v

′
k). Thus, (vk, vi, vj , v′k) is not a purely

broken-triangle. But this contradicts our initial assumption. Finally, merging two
values v′′k , v

′′′
k in the domain of a variable xk which satisfies m-fBTP does not intro-

duce a purely broken-triangle. ut
Lemma 2 cannot be extended to all pair of values which satisfies m-wBTP (and

does not satisfy m-fBTP) [19]. Indeed, Figure 5(a) illustrates the case of a variable x4
which satisfies 1-wBTP since the variable x3 supports all the broken-triangles on x4.
Figure 5(b) is obtained after merging the values 2 and 1 into a new value 3. Hence,
the variable x3 no longer support the broken-triangle (3, 2, 2, 0) (in bold) because
the value 2 ∈ D(x3) is compatible at the same time with 2 (∈ D(x1)), 2 (∈ D(x2))
and 3 (∈ D(x4)).

We now establish the link with variable elimination.

Theorem 2 Given an arc-consistent CSP instance I = (X,C), if a variable xk ∈ X

satisfies m-fBTP, then it can be eliminated from I while preserving satisfiability.

Proof Given an arc-consistent binary CSP instance I = (X,C) and a variable xk ∈ X
which satisfies m-fBTP. Since value merging makes no empty domain and does not
affect the satisfiability of I (thanks to Corollary 2, we will merge each pair of values
in D(xk) until obtaining a unique value since merging a pair of values does not
introduce a new purely broken-triangle on xk (thanks to Lemma 2).

As I is arc-consistent, so any consistent assignment A to X\{xk} can be consis-
tenly extended to xk because D(xk) contains a unique value and each value A[xi]
has a support inD(xk). So, the unique value inD(xk) is compatible with each value
in A. Thus, xk can be eliminated without changing the satisfiability of I. ut

11

1

2

0 0

2

1

10 2

10 2

x3 x4

x2

x1

1

2

0 0

3

10 2

10 2

x3 x4

x2

x1

(a) (b)

Fig. 5 (a) A variable x4 which satisfies 1-wBTP in an arc-consistent CSP instance. (b) The CSP
instance obtained from I after merging the values 1 and 2 into a new value 3.

4 A maximal variable-elimination condition

It has been proved that the variable which satisfies BTP can be eliminated while pre-
serving satisfiability [8]. In section 3, we have shown that even if a variable does not
satisfy BTP it can be eliminated without changing the satisfiability of the instance
while this variable satisfies m-fBTP. Thus, in an obvious sense, satisfying BTP is not
a maximal variable-elimination condition.

Definition 10 A variable-elimination condition is maximal if the elimination of any
other variable not respecting the condition necessarily leads to a modification of the
satisfiability of some instance.

In this section, we show that m-fBTP is a maximal variable-elimination condi-
tion when m = n− 3.

Theorem 3 In an unsatisfiable binary CSP instance I = (X,C), there is no variable not
satisfyingm-fBTP form = n−3 and which can be eliminated while preserving satisfiability.

Proof Considering an unsatisfiable binary CSP instance I = (X,C) and a variable
xk which does not satisfy m-fBTP for m = n − 3. By the definition of m-fBTP, there
is a broken-triangle (v′k, vi, vj , v

′′
k), with vi ∈ D(xi), vj ∈ D(xj) and v′k, v

′′
k ∈ D(xk).

And there is (v`1 , . . . , v`m) ∈ D(x`1) × . . . × D(x`m), where {x`1 , . . . , x`m} = X \
{xi, xj , xk}, such that (v`1 , . . . , v`m) is a partial solution and for all α ∈ {1, . . . ,m}
we have:

• (v`α , vi) ∈ Rel(C`αi) and
• (v`α , vj) ∈ Rel(C`αj)

In terms of micro-structure we have a (n − 1)-clique (a subset of n − 1 vertices
that induces a complete subgraph) that we denote Cl. We have a broken-triangle,
and so:

• (vi, v
′′
k) /∈ Rel(Cik),

• (vj , v
′
k) /∈ Rel(Cjk),

12

• (vi, v
′
k) ∈ Rel(Cik) and

• (vj , v
′′
k) ∈ Rel(Cjk)

After eliminating xk, and by definition of elimination, the obtained instance I ′

has (n−1) variables and its micro-structure contains the (n−1)-cliqueCl. According
to Property 2 in [25], Cl corresponds to a solution of I ′. Thus, we introduced a
solution which did not exist in the initial instance since (vi, v

′′
k) /∈ Rel(Cik) and

(vj , v
′
k) /∈ Rel(Cjk). It follows that the elimination of variable which does not satisfy

m-fBTP does not preserve satisfiability. ut
We can now deduce the desired result.

Corollary 5 (n− 3)-fBTP is a maximal variable-elimination condition.

5 m-fBTP: tractability and solving

In this section, we show the tractability of instances satisfying m-fBTP. Next, we
prove that these instances will be efficiently solved by algorithms of the state-of-the-
art like MAC (Maintaining Arc Consistency [20]) and RFL (Real Full Look-ahead
[21]).

5.1 Tractability of m-fBTP instances

Contrary to k-BTP and m-wBTP which sometimes need a high level of consistency,
we show that arc consistency is a decision procedure for m-fBTP. After defining m-
fBTP for pair of values and variable, we now extend the definition to binary CSP
instances.

Definition 11 A binary CSP instance I with a variable ordering < satisfies m-fBTP
relative to this order if for all variables xk, each pair of values in D(xk) satisfies
m-fBTP in the sub-instance of I on variables xi ≤ xk (m ≤ n− 3).

We now prove that m-fBTP is conservative3 [11], m-fBTP holds even after en-
forcing any filtering consistency which only removes values from domains.

Lemma 3 m-fBTP with respect to any fixed variable ordering is conservative.

Proof It is clear that m-fBTP holds for a binary CSP instance thanks to the absence
of some tuples. Obviously, removing values from the domain of any variable in a
binary CSP instance cannot add new tuples. Thus, m-fBTP still holds. ut

We now investigate the consequence of Lemma 3 on m-fBTP instances solving.

Theorem 4 Arc consistency is a decision procedure for any binary CSP instance which
satisfies m-fBTP (1 ≤ m ≤ n− 3).

3 A class Γ of CSP instances is said to be conservative with respect to a filtering consistency φ if
it is closed under φ, that is, if the instance obtained after the application of φ still belongs to Γ .

13

Proof Let I = (X,C) be a binary CSP instance satisfying m-fBTP with respect to
a variable ordering <. We begin by enforcing arc consistency. If this results to an
empty domain, then obviously the obtained instance has no solution. Otherwise,
thanks to Lemma 3, we know that the obtained instance will also satisfy m-fBTP.
According to Theorem 2, we can proceed iteratively to eliminate the last variable
with respect to< until obtaining an instance with three variables x1, x2 and x3. As I
is becoming arc-consistent, so there is no empty domain. Hence,D(x1) (respectively
D(x2)) must contain at least a value v1 (resp. v2) such that (v1, v2) ∈ Rel(C12) (1).
We will suppose, for a contradiction, that the assignment A = (v1, v2) cannot be
consistenly extended to x3. For this, we assume that there is no v3 ∈ D(x3) which is
consistent with both v1 and v2. But, by arc consistency, we should have two values
v′3, v

′′
3 ∈ D(x3) such that

• (v1, v
′
3) ∈ Rel(C13) (2) and

• (v2, v
′
3) ∈ Rel(C23) (3)

Note that v′3 and v′′3 must be different and (v1, v
′′
3) /∈ Rel(C13) (4) and (v2, v

′
3) /∈

Rel(C23) (5) (otherwise we contradict our hypothesis).
In this way, (1), (2), (3), (4) and (5) form a purely broken-triangle on xk which

can be supported by no other variable. Indeed, by Definition 9, any variable x` must
be different from {xi, xj , xk}. Thus, this contradicts our assumption. Finally, A can
be consistenly extended to x3. ut

The following theorem is a logical consequence of Corollary 5 and Theorem 4.

Theorem 5 The class of binary CSP instances which satisfy (n − 3)-fBTP defines the
biggest tractable class resolved by variable elimination.

As with m-wBTP, checking whether it is possible to compute, in polynomial
time, a variable ordering for which a binary CSP instance satisfies m-fBTP still re-
mains an open question.

5.2 Solving of m-fBTP instances by algorithms of the state-of-the-art

BTP and m-fBTP share many interesting properties. For example, the two tractable
classes are conservative and solved by arc consistency. Hence, as BTP is solved in
polynomial time by MAC, we will prove that MAC and RFL solvem-fBTP instances
in polynomial time as well. Recall that both MAC and RFL guarantee arc consis-
tency at each node of the search tree. The difference between them is that MAC is
developing a binary search tree and RFL is developing a search tree with at most
d branches at each node of the search tree. In addition, MAC does not necessarily
choose the same variable at each level of the search tree (see [26] for more details on
backtrack algorithms).

Theorem 6 If a binary CSP instance I satisfiesm-fBTP for an unknown variable ordering,
then MAC and RFL solve I in polynomial time whatever the order of variables instanciation.

Proof (Similar to the proof of Theorem 7.6. in [11]) Given a binary CSP instance I
which satisfies m-fBTP, we deduce by Lemma 3 that any sub-instance of I, obtained
after assigning a value v to a variable x, is alsom-fBTP. By applying AC, the instance
I either has a solution or has at least an empty domain. If there is an empty domain,

14

then I is unsatisfiable. Otherwise (if there is no empty domain), MAC or RFL will
find at least one value in the domain (which is non-empty) of the next variable
which will be compatible with all the values in the current assignment. In the worst
case, MAC or RFL will check the compatibility of the d values (in the domain of the
next variable) with the current assignment in each level of the search tree. This op-
eration will take O(nd). Thus, MAC and RFL will have a complexity O(ned3) with
O(ed2) for enforcing arc consistency after assigning a value to the current variable.
ut

5.3 What about variable ordering?

To check whether a given binary CSP instance I satisfies BTP, Cooper et al. in [11]
propose to construct a new CSP instance OI which will be satisfiable when there
exists a variable ordreing for I. OI has the same set of variables as I but with dif-
ferent domains. Indeed, each variable has n values representing its possible posi-
tions in the ordering. For each broken-triangle (v′k, vi, vj , v

′′
k) in I with vi ∈ D(xi),

vj ∈ D(xj) and v′k, v
′′
k ∈ D(xk), there is a constraint c in OI over xi, xj and xk

which requires that xk < max(xi, xj). The instance OI is max-closed [27] and so is
tractable (see proof of Theorem 3.2. in [11] for more details).

For m-fBTP, we will proceed in a somewhat similar way. If there is a purely
broken-triangle on a given variable xk with respect to xi and xj , we add a new con-
straint c to OI over xi, xj and xk which requires that xk < max(xi, xj). And when
there is a flexible broken-triangle on xk with respect to xi and xj and which is sup-
ported by a variable x`, we have to add a less restrictive constraint which requires
that If xk > max(xi, xj) then x` < max(xi, xj). This constraint will guarantee that
x` is before xk when xk is after xi and xj in the variable ordering, as mentioned
in Definition 11. In other words, if two variables xi and xj form a flexible broken-
triangle on xk and xk > max(xi, xj), the support variable x` must be before xi or xj ,
otherwise xk does not satisfy 1-fBTP in the sub-instance of I on variables xi ≤ xk.

Similarly, if the flexible broken-triangle on xk with respect to xi and xj and
which is supported by a set of support variables {x`1 , x`2 , . . . , x`m} ⊆ X\{xi, xj , xk},
we have the following constraint which requires that If xk > max(xi, xj) then
x`1 < max(xi, xj) and x`2 < max(xi, xj) and ... and x`m < max(xi, xj).

Unfortunately, in this case, we do not know whether the instance OI is tractable
because their constraints are no longer max-closed. So, the question of the variable
ordering for which a binary CSP instance satisfies m-fBTP still remains open.

Before concluding this section, we have to point out that, even if all the broken-
triangles of a given binary CSP instance I are flexible, then I does not necessarily
satisfy m-fBTP. Figure 6 shows the case of a binary CSP instance which does not
satisfy 1-fBTP although all broken-triangles, listed below, are flexible.

• (v′i, v`, vk, v
′′
i), (v

′
i, v`, v

′
j , v

′′
i) and (v′i, v

′′
j , vk, v

′′
i) on xi, supported by xj , xk and

x`, respectively.
• (v′j , v`, vk, v

′′
j), (v

′
j , v`, v

′
i, v

′′
j) and (v′j , v

′′
i , vk, v

′′
j) on xj , supported by xi, xk and

x`, respectively.
• (v′k, vi, vj , v

′′
k), (v

′
k, vi, v`, v

′′
k) and (v′k, v

′′
` , vj , v

′′
k) on xk, supported by x`, xj and

xi, respectively.
• (v′`, vi, vj , v

′′
`), (v

′
`, vi, v

′
k, v

′′
`) and (v′`, v

′′
k , vj , v

′′
`) on x`, supported by xk, xj and

xi, respectively.

15

These flexible broken-triangles impose the following constraints on the variable or-
dering:
• If xi > max(xk, x`) then xj < max(xk, x`)
• If xi > max(x`, xj) then xk < max(x`, xj)
• If xi > max(xk, xj) then x` < max(xk, xj)
• If xj > max(xk, x`) then xi < max(xk, x`)
• If xj > max(x`, xi) then xk < max(x`, xi)
• If xj > max(xk, xi) then x` < max(xk, xi)
• If xk > max(xi, xj) then x` < max(xi, xj)
• If xk > max(x`, xi) then xj < max(x`, xi)
• If xk > max(x`, xj) then xi < max(x`, xj)
• If x` > max(xi, xj) then xk < max(xi, xj)
• If x` > max(x`, xi) then xj < max(xk, xi)
• If x` > max(x`, xj) then xi < max(xk, xj)

Thus, it is impossible to find a variable ordering for which the instance satisfies
1-fBTP.

v`

v′`

v′′` v′′k

v′k
vk

v′′jv′j vj

v′′iv′i vi

x` xk

xj

xi

Fig. 6 A binary CSP instance which does not satisfy 1-fBTP whereas all broken-triangles are flexi-
ble.

6 m-fBTP vs some tractable classes based on BTP

BTP defines an important tractable class which has deserved to be studied and ex-
tended in many previous works (as mentioned in the introduction). Thus, it is natu-
ral to compare m-fBTP to some of these extensions such as DBTP [15], ∀∃-BTP [13],
BTPAC [14], k-BTP [17] and WBTP [18]. For each class, we will show if it is a equality
relation, inclusion or intersection.

6.1 DBTP

The Dual Broken-Triangle Property is an extension of BTP to non-binary CSPs by us-
ing the dual encoding [28]. Even for binary case, DBTP is different from BTP and
authorises the presence of some broken-triangles which are forbidden by BTP.

16

Definition 12 (DBTP [29,15]) A binary CSP instance I satisfies DBTP with respect
to a constraint ordering ≺ if and only if the dual of I satisfies BTP with respect to ≺.

Graphically, DBTP can be modelized as well as BTP, it suffices to replace each
value in the micro-structure by a pair of compatible values in the micro-structure
of the dual4 [30]. For the simplicity of graphical representation, we will use vivj to
denote the compatible pair of values (vi, vj) in the figure of the micro-structure of
the dual.

Theorem 7 m-fBTP and DBTP are incomparable.

Proof The binary CSP instance I of Figure 7 satisfies 1-fBTP with respect to the
variable ordering x` < xk < xi < xj despite the presence of the following flexible
broken-triangles:

• (vi, vj , v
′
k, v

′
i) on xi, supported by x`

• (v′j , v
′
i, v

′
k, vj) on xj , supported by x`

• (v′′k , v
′
j , v

′
i, v

′
k) on xk, supported by x`

• (vi, v`, v
′
j , v

′
i) on xi, supported by xk

• (v′j , v`, vi, vj) on xj , supported by xk
This imposes the following constraints on the variable ordering:

• If xi > max(xk, xj) then x` < max(xk, xj)
• If xj > max(xk, xi) then x` < max(xk, xi)
• If xk > max(xi, xj) then x` < max(xi, xj)
• If xi > max(x`, xj) then xk < max(x`, xj)
• If xj > max(x`, xi) then xk < max(x`, xi)

At the same time, the micro-structure of the dual of I does not satisfy BTP on
each of the following three constraints:

• ((vj , v
′
k), (vi, vj), (vi, v

′′
k), (v

′
j , v

′′
k)) on Cjk,

• ((v′i, v
′
j), (v

′
j , v

′′
k), (vi, v

′′
k), (vi, vj)) on Cij and

• ((vi, v
′′
k), (vi, vj), (vj , v

′
k), (v

′
i, v

′
k)) on Cik.

So I does not satisfy DBTP.
On the other side, the binary CSP instance I of Figure 8 does not satisfy 1-fBTP

whatever the variable ordering because of the following broken-triangles:

• (vi, v
′′
k , v

′
j , v

′
i) on xi,

• (vj , vi, v
′′
k , v

′
j) on xj and

• (v′k, v
′
i, v

′
j , v

′′
k) on xk.

And there is no fourth variable that can support one of these broken-triangles.
Futhermore, the micro-structure of the dual of I satisfies BTP with respect to the
constraint ordering Cij < Cik < Cjk. So I satisfies DBTP.

Finally, we deduce that DBTP and 1-fBTP are incomparable. ut Obviously, the
instance of figures 7 and 8 can be generalised to any m > 1 while maintaining the
same logic.

4 Given a binary CSP instance I = (X,C), the Micro-structure based on Dual of I is the undirected
graph (V,E) such that:
• V = {(Ci, ti) : Ci ∈ C, ti ∈ Rel(Ci)},
• E = { {(Ci, ti), (Cj , tj)} | i 6= j, ti[Scp(Ci) ∩ Scp(Cj)] = tj [Scp(Ci) ∩ Scp(Cj)]}

where tk[Y] denotes the restriction of tk to the variables in Y .

17

v`

v′′k

v′k

vj v′j

vi v′i
x`

xk

xj

xi

vjv
′
k

v′jv
′′
k

viv
′′
k v′iv

′
k

vjv`

vivj v′iv
′
j

viv`

Cjk

Cik

Cij

Cj`

Ci`

(a) (b)

Fig. 7 (a) The micro-structure and (b) the micro-structure of the dual of a binary CSP instance I
which satisfies 1-fBTP with respect to the order x` < xk < xi < xj but does not DBTP whatever
the constraint ordering.

v′′k

v′k

vj v′j

vi v′i

xk

xj

xi

v′jv
′′
k

viv
′′
k v′iv

′
k

vivj v′iv
′
j

Cjk

Cik

Cij

(a) (b)

Fig. 8 (a) The micro-structure and (b) the micro-structure of the dual of a binary CSP instance
which satisfies DBTP with respect to the order Cij < Cik < Cjk but does not 1-fBTP whatever the
variable ordering.

6.2 ∀∃-BTP

∀∃-BTP is a tractable class, introduced by Cooper in [13], and allows the existence
of some broken-triangles.

Definition 13 (∀∃-BTP) A binary CSP instance I satisfies the property ∀∃-BTP with
respect to a variable ordering < if, and only if, for each pair of variables xi, xk such
that i < k, ∀vi ∈ D(xi), ∃vk ∈ D(xk) such that (vi, vk) ∈ Rel(Cik) and ∀xj with j < k

and j 6= i, and ∀vj ∈ D(xj) and ∀v′k ∈ D(xk), (vi, vj , vk, v′k) is not a broken-triangle
on xk with respect to xi and xj .

Theorem 8 defines the relationship between m-fBTP and ∀∃-BTP.

Theorem 8 m-fBTP and ∀∃-BTP are incomparable.

18

Proof Figure 9 shows a binary CSP instance which satisfies ∀∃-BTP but does not
satisfy 1-fBTP because there is no fourth variable which can support the following
broken-triangles:

• (v′i, vk, vj , v
′′
i) on xi,

• (v′′j , vi, vk, v
′
j) on xj and

• (v′k, vi, vj , v
′′
k) on xk.

For the binary CSP instance of Figure 8(a), we can observe that it satisfies 1-fBTP
but does not satisfy ∀∃-BTP. ut

v′′k

v′k
vk

v′′j v′jvj

v′′i v′ivi

xk

xj

xi

Fig. 9 A binary CSP instance which satisfies ∀∃-BTP whatever the variable ordering but does not
satisfy 1-fBTP.

6.3 BTPAC

The concept of hidden tractable class, obtained by applying some polynomial trans-
formation, has been introduced in [14] to extend the power of already existing
tractable classes. In this way, and for the case of BTP, the presence of several broken-
triangles can be allowed, especially when a broken-triangle contains at least one
inconsistent value. Here, we compare m-fBTP to the smallest hidden tractable class
based on BTP, namely BTPAC which is obtained by filtering by arc consistency.

Definition 14 (BTPAC [14]) A binary CSP instance I satisfies BTPAC if it satisfies
BTP after enforcing arc consistency.

We now establish the link between m-fBTP and BTPAC .

Theorem 9 m-fBTP and BTPAC are incomparable.

Proof Despite the presence of the following broken-triangles:

• (v′i, v
′′
k , vj , vi) on xi,

• (vj , vi, v
′
k, v

′
j) on xj and

• (v′k, vi, vj , v
′′
k) on xk.

19

Figure 10(a) shows an example of a binary CSP instance which satisfies BTPAC (All
broken-triangles will be removed after enforcing arc consistency) but does not 1-
fBTP (because there is no support variable for all the broken-triangles).
• (vi, vj , v

′′
k , v

′
i) on xi which cannot be supported by x` because v` is compatible

with both vj and v′′k .
• (vj , vi, v

′
k, v

′
j) on xj which cannot be supported by x` because v` is compatible

with both vi and v′k.
• (v′k, vi, vj , v

′′
k) on xk which cannot be supported by x` because v` is compatible

with both vi and vj .
Thus this instance does not satisfy 1-fBTP (and obviously m-fBTP). Figure 10(b)

v`

v′′k

v′k
vk

vj v′j

vi v′i
x`

xk

xj

xi

v`

v′` v′′k

v′k

vk

vj v′j

vi v′i
x`

xk

xj

xi

(a) (b)

Fig. 10 (a) A binary CSP instance which satisfies BTPAC but does not 1-fBTP. (b) A binary CSP
instance which satisfies 1-fBTP but does not BTPAC .

illustrates the case of a binary CSP instance which does not satisfy BTPAC since
each value in this instance is arc-consistent. On the other hand, this binary CSP
instance satisfies 1-fBTP with respect to the variable ordering x` < xi < xj < xk
despite the presence of four broken-triangles (only one is flexible):
• (v′`, vj , vi, v`) on x`,
• (v′i, vk, v`, vi) on xi,
• (vj , v

′
`, vk, v

′
j) on xj and

• (v′k, vi, vj , v
′′
k) on xk which is supported by x`

which imposes the following constraints on the variable ordering:
• x` < max(xi, xj),
• xi < max(x`, xk),
• xj < max(x`, xk),
• If xk > max(xi, xj) then x` < max(xi, xj).

Finally, BTPAC and 1-fBTP are incomparable. ut

6.4 k-BTP

k-BTP [17] is an extension of BTP which authorises some specific broken-triangles.
Formally, it is defined as follows.

20

Definition 15 (k-BTP) A binary CSP instance I satisfies the k-BTP property for a
given k (2 ≤ k < n) relative to a variable order < if, for all subsets of variables
xi1 , xi2 , . . . , xik+1

such that xi1 < xi2 < · · · < xik+1
, there is at least one pair of

variables (xij , xij′) with 1 ≤ j < j′ ≤ k such that there is no broken-triangle on
xk+1 relative to xij and xij′ .

The binary CSP instances which satisfy k-BTP do not define a tractable class if
they are not strong strong k-consistent5 [31].

Theorem 10 [17] Given a binary CSP instance I such that there exists a constant k with
2 ≤ k < n for which I satisfies both strong k-consistency and k-BTP with respect to the
variable ordering <. Then I is consistent and a solution can be found in polynomial time.

Theorem 11 m-fBTP and k-BTP are incomparable.

Proof Contrary to k-BTP which needs the strong k-consistency to be tractable, m-
fBTP defines by itself a tractable class (it does not require any level of consistency).
So if we consider a binary CSP instance I which satisfies m-fBTP but is not strong
k-consistent, then even if I satisfies the property k-BTP, it will not be in the tractable
class defined by k-BTP because it is not strong k-consistent.

v′`

v`

v′′`

v′′′` v′′′k

v′′k

vk

v′k

vj v′j v′′j v′′′j

v′ivi v′′i v′′′i

x` xk

xj

xi

Fig. 11 A Binary CSP instance which satisfies the property 3-BTP with respect to every possible
variable ordering but does not satisfy 1-fBTP, whatever the variable ordering.

Figure 11 illustrates the case of a binary CSP instance which does not satisfy k-
BTP whatever the variable ordering because of the presence of the following flexible
broken-triangles:

• (vi, v
′
j , v

′
k, v

′′′
i) on xi which is supported by x`,

• (vi, v
′
`, v

′
k, v

′′′
i) on xi which is supported by xj ,

• (vj , v
′′
i , v

′′
k , v

′′′
j) on xj which is supported by x`,

5 A binary CSP instance I satisfies i-consistency if any consistent assignment to (i− 1) variables
can be extended to a consistent assignment on any ith variable. A binary CSP instance I satisfies
strong k-consistency if it satisfies i-consistency for all i such that 1 < i ≤ k.

21

• (vj , v
′′
i , v

′′
` , v

′′′
j) on xj which is supported by xk,

• (vk, v`, v
′′
j , v

′′′
k) on xk which is supported by xi and

• (v`, v
′′
j , v

′
i, v

′′′
`) on x` which is supported by x`.

Each one of these flexible broken-triangles imposes the following constraints on the
variable ordering:

• If xi > max(xk, xj) then x` < max(xk, xj),
• If xi > max(xk, x`) then xj < max(xk, x`),
• If xj > max(xi, xk) then x` < max(xi, xk),
• If xj > max(xi, x`) then xk < max(xi, x`),
• If xk > max(xj , x`) then xi < max(xj , x`) and
• If x` > max(xi, xj) then xk < max(xi, xj).

Thus, there is no possible variable ordering for which this binary CSP instance sat-
isfies 1-fBTP. In contrast, this binary CSP instance satisfies the property 3-BTP. Ob-
viously, for each tuple (vp, vq) in this binary CSP instance with p, q ∈ {i, j, k, `} and
p 6= q, we can add two values, one to xg and the second to xh withg 6= h and
g, h ∈ {i, j, k, `} \ {p, q} such that the qudruplet (vp, vq, vg, vh) constitutes a partial
solution. In this way, this binary CSP instance satisfies both 3-BTP and strong 3-
consistency. ut

6.5 WBTP

We finish this section with the recent tractable class called WBTP [18].

Definition 16 (WBTP) A binary CSP instance equipped with an order< on its vari-
ables satisfies WBTP (Weak Broken-Triangle Property) if for each triple of variables
xi < xj < xk and for all vi ∈ D(xi), vj ∈ D(xj) such that (vi, vj) ∈ Rel(Cij), there
is a variable x` < xk such that when v` ∈ D(x`) is compatible with vi and vj , then
∀vk ∈ D(xk), if

• (v`, vk) ∈ Rel(C`k)

then

• (vi, vk) ∈ Rel(Cik) and
• (vj , vk) ∈ Rel(Cjk)

Theorem 12 1-fBTP (WBTP.

Proof Obviously because both WBTP and 1-fBTP use a unique support variable and
their condition depends only from vi and vj . ut

The converse of Theorem 12 is false by means of Figure 12. In fact, the bi-
nary CSP instance satisfies WBTP (anyone of x`β and x`γ supports all the broken-
triangles) but does not satisfy 1-fBTP (more details will be given in the proof of
Theorem 13).

Theorem 13 2-fBTP and WBTP are incomparable.

Proof Figure 12 shows a binary CSP instance which satisfies WBTP with respect to
the variable ordering x`β < x`γ < xi < xj < xk but does not satisfy 2-fBTP. More
precisely, there are three purely broken-triangles:

22

v′′′k

v′′k

vk

v′k

vj v′j v′′j v′′′j

v′ivi v′′i v′′′i

v′`β

v′′`β

v′′′`β

v′`γ
v′′`γ

v′′′`γ

xk

xj

xi

x`β

x`γ

Fig. 12 A binary CSP instance which is WBTP but is not 2-fBTP.

• (vi, v
′′
j , v

′′
k , v

′′′
i) on xi which cannot be supported by neither x`β nor x`γ (nor x`β

and x`γ together) because v′′`β and v′′`γ are compatible with both v′′j and v′′k .
• (vj , v

′′
i , v

′
k, v

′′′
j) on xj which cannot be supported by neither x`β nor x`γ (nor x`β

and x`γ together) because v′′′`β and v′′′`γ are compatible with both v′′i and v′k.
• (vk, v

′
i, v

′
j , v

′′′
k) on xk which cannot be supported by neither x`β nor x`γ (nor x`β

and x`γ together) because v′`β and v′`γ are compatible with both v′i and v′j .

v′′k

v′k

vj v′j

vi v′i

v′`β

v′′`β

v′`γ
v′′`γ

xk

xj

xi

x`β

x`γ

Fig. 13 A binary CSP instance which is 2-fBTP but is not WBTP.

Figure 13 illustrates the case of a binary CSP instance which does not satisfy
WBTP but satisfies 2-fBTP with respect to the variable ordering x`β < x`γ < xi <

xj < xk despite the presence of the following broken-triangles:

• (vi, vj , v
′′
k , v

′
i) on xi which is supported by x`β and x`γ together.

• (vj , vi, v
′
k, v

′
j) on xj which is supported by x`β and x`γ together.

• (v′k, vi, vj , v
′′
k) on xk which is supported by x`β and x`γ together.

23

• (v′k, v
′′
`γ
, vj , v

′′
k) on xk which is supported by xi.

• (v′`γ , v
′
`β
, vj , v

′′
`γ
) on x`γ which cannot be supported by neither xi nor xk (nor xi

and xk together).
• (v′`β , vi, v

′′
`γ
, v′′`β) on x`β which cannot be supported by neither xj nor xk (nor xj

and xk together).

They will impose the following constraints on the variable ordering:

• If xi > max(xj , xk) then x`β < max(xj , xk) and x`γ < max(xj , xk).
• If xj > max(xi, xk) then x`β < max(xi, xk) and x`γ < max(xi, xk).
• If xk > max(xi, xj) then x`β < max(xi, xj) and x`γ < max(xi, xj).
• If xk > max(xj , x`β) then xi < max(xj , x`β).
• x`β < max(xi, x`γ).
• x`γ < max(xj , x`β).

By considering the variable ordering x`β < x`γ < xi < xj < xk, this binary CSP
instance satisfies 2-fBTP. ut

In the same way, we can show the following result:

Theorem 14 for m > 1, m-fBTP and WBTP are incomparable.

Figure 14 summarizes some relationship between tractable classes based on BTP.
An arrow from c1 to c2 (resp. a dashed line between c1 and c2) means that c1 (c2
(resp. c1 and c2 are incomparable). Obviously, a two-way arrow indicates equality.

Some of these relationships have been proved in this paper and some others in
[14,32]. For several hidden tractable classes, more details about filtering by consis-
tency can be found in [33,34].

7 Experimental trials

To test the existence of the property 1-fBTP, we we carried out an experimental
study on all the binary benchmark instances of the 2008 international CSP solver
competition6, namely the 3,795 binary CSP instances. Our algorithm is written in
C++ within our own CSP library. The experiments were performed on 8 Dell Pow-
erEdge M820 blade servers with two processors (Intel Xeon E5-2609 v2 2.5 GHz and
32 GB of memory) under Linux Ubuntu 14.04.

Before applying our algorithm, we point out that we made each instance arc-
consistent. As described in Subsection 5.3, we associate a non-binary CSP instance
O to each benchmark. After that, we check, for each variable xk, if there exists a
broken-triangle on each pair of values v′k, v

′′
k ∈ D(xk). Once a broken-triangle on

v′k, v
′′
k is found, we search over the other n− 3 variables to see if there exists a vari-

able x` which supports this broken-triangle. If we find one, we add a constraint
which requires If xk > max(xi, xj) then x` < max(xi, xj). Otherwise, the broken-
triangle on xk, we add a new constraint c to O over xi, xj and xk which requires
that xk < max(xi, xj). Finally, we use MAC to check the satisfiability of the orginal
instance. The previous result is tantamount to saying whether the original instance
satisfies 1-fBTP.

6 http://www.cril.univ-artois.fr/CPAI08

24

BTP

RRM

TREE

β-ACYCLIC

α-ACYCLIC

DUAL-TREE

MME

1-fBTP

WBTP 1-wBTP 2-wBTP

2-fBTP

m-wBTP

m-fBTP

DBTP

BTPAC

DBTPAC DBTPPWC

BTPPIC

BTPmaxRPC

BTPNIC

BTPSAC

TRIANGULAR

k-BTP

∀∃-BTP

Fig. 14 Relationship between tractable properties based on BTP.

We obtained results for 3,260 instances. Among them, 280 instances satisfies 1-
fBTP, including 46 consistent instances. All these instances also satisfy BTP after
enforcing arc-consistency and solving by MAC and RFL without backtrack (more
details are given in [14]).

8 Conclusion

BTP relies on absence of broken-triangle to define an important tractable class and
to allow reducing search space size through value merging or variable elimination.
Recently, many new weaker versions of BTP, which authorise the presence of some

25

broken-triangle like k-BTP, WBTP andm-wBTP, have been studied but none of them
define tractable class and permit variable elimination and value merging simulta-
neously. Moreover, much of these versions, except WBTP, require a high level of
consistency.

In this paper, we have proposed a new light version of BTP, called m-fBTP for
flexible broken-triangle property. m-fBTP is based on support variable concept and
permits to cover some imperfections of previous versions. More precisely, it allows
value merging, represents a maximal variable-elimination condition and also de-
fines a hybrid tractable class solved by arc consistency. m-fBTP is incomparable
with the patterns described in [35] and which characterise tractable classes for CSPs
defined by partially-ordered forbidden patterns and solved by arc consistency.

It would be interesting to generalise this family of definitions to non-binary
CSPs. More generally, we have to study a new extension of BTP that is based on
only three variables and which preserves its interesting characteristics.

26

References

1. U. Montanari, Networks of Constraints: Fundamental Properties and Applications to Picture
Processing, Artificial Intelligence 7 (1974) 95–132.

2. A. K. Mackworth, Consistency in Networks of Relations, Artificial Intelligence 8 (1977) 99–118.
3. E. C. Freuder, Eliminating interchangeable values in constraint satisfaction problems, in: Pro-

ceedings of the 9th National Conference on Artificial Intelligence, 1991, Volume 1., 1991, pp.
227–233.

4. C. Likitvivatanavong, R. H. C. Yap, Many-to-many interchangeable sets of values in csps, in:
Proceedings of SAC, 2013, pp. 86–91.

5. M. C. Cooper, A. El Mouelhi, C. Terrioux, B. Zanuttini, On Broken Triangles, in: Principles and
Practice of Constraint Programming - 20th International Conference, CP 2014. Proceedings,
2014, pp. 9–24.

6. M. C. Cooper, A. Duchein, A. El Mouelhi, G. Escamocher, C. Terrioux, B. Zanuttini, Broken
triangles: From value merging to a tractable class of general-arity constraint satisfaction prob-
lems, Artificial Intelligence 234 (2016) 196 – 218.

7. D. A. Cohen, M. C. Cooper, G. Escamocher, S. Zivny, Variable Elimination in Binary CSP via
Forbidden Patterns, in: IJCAI 2013, Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, 2013, 2013, pp. 517–523.

8. D. A. Cohen, M. C. Cooper, G. Escamocher, S. Zivny, Variable and value elimination in binary
constraint satisfaction via forbidden patterns, J. Comput. Syst. Sci. 81 (7) (2015) 1127–1143.

9. A. Dechter, R. Dechter, Removing redundancies in constraint networks, in: Proceedings of the
6th National Conference on Artificial Intelligence., 1987, pp. 105–109.

10. M. C. Cooper, P. Jeavons, A. Salamon, Hybrid tractable CSPs which generalize tree structure,
in: Proceedings of ECAI, 2008, pp. 530–534.

11. M. C. Cooper, P. Jeavons, A. Salamon, Generalizing constraint satisfaction on trees: hybrid
tractability and variable elimination, Artificial Intelligence 174 (2010) 570–584.

12. W. Naanaa, Unifying and extending hybrid tractable classes of csps, J. Exp. Theor. Artif. Intell.
25 (4) (2013) 407–424.

13. M. C. Cooper, Beyond consistency and substitutability, in: Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014. Proceedings, 2014, pp. 256–271.

14. A. El Mouelhi, P. Jégou, C. Terrioux, Hidden Tractable Classes: From Theory to Practice, in:
26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI, 2014, 2014, pp.
437–445.

15. A. El Mouelhi, P. Jégou, C. Terrioux, A Hybrid Tractable Class for Non-Binary CSPs, Con-
straints 20 (4) (2015) 383–413.

16. P. Jégou, C. Terrioux, The extendable-triple property: A new CSP tractable class beyond BTP,
in: Proceedings of AAAI, 2015, pp. 3746–3754.

17. M. C. Cooper, P. Jégou, C. Terrioux, A microstructure-based family of tractable classes for CSPs,
in: Principles and Practice of Constraint Programming - 21st International Conference, CP,
2015, Proceedings, 2015, pp. 74–88.

18. W. Naanaa, Extending the broken triangle property tractable class of binary csps, in: Proceed-
ings of the 9th Hellenic Conference on Artificial Intelligence, SETN, 2016, 2016, pp. 3:1–3:6.

19. M. C. Cooper, A. El Mouelhi, C. Terrioux, Extending broken triangles and enhanced value-
merging, in: Principles and Practice of Constraint Programming - 22nd International Confer-
ence, CP 2016, Proceedings, 2016, pp. 173–188.

20. D. Sabin, E. C. Freuder, Contradicting Conventional Wisdom in Constraint Satisfaction, in: Pro-
ceedings of ECAI, 1994, pp. 125–129.

21. B. Nadel, Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms, In Search in
Artificial Intelligence, publisher = Springer-Verlag, year = 1988, pages = 287-342.

22. A. El Mouelhi, A btp-based family of variable elimination rules for binary csps, in: To appear
in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

23. R. Dechter, J. Pearl, The Cycle-cutset method for Improving Search Performance in AI Ap-
plications, in: Proceedings of the third IEEE on Artificial Intelligence Applications, 1987, pp.
224–230.

24. F. Rossi, C. J. Petrie, V. Dhar, On the equivalence of constraint satisfaction problems, in: ECAI,
1990, pp. 550–556.

25. P. Jégou, Decomposition of Domains Based on the Micro-Structure of Finite Constraint Satisfac-
tion Problems, in: Proceedings of the 11th National Conference on Artificial Intelligence, 1993.,
1993, pp. 731–736.

27

26. A. El Mouelhi, P. Jégou, C. Terrioux, B. Zanuttini, Some new tractable classes of csps and
their relations with backtracking algorithms, in: Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, 10th International Conference,
CPAIOR 2013, May 18-22, 2013. Proceedings, 2013, pp. 61–76.

27. P. Jeavons, M. Cooper, Tractable constraints on ordered domains, Artificial Intelligence 79(2)
(1995) 327–339.

28. R. Dechter, J. Pearl, Tree-Clustering for Constraint Networks, Artificial Intelligence 38 (1989)
353–366.

29. A. El Mouelhi, P. Jégou, C. Terrioux, A Hybrid Tractable Class for Non-Binary CSPs, in: 2013
IEEE 25th International Conference on Tools with Artificial Intelligence, November 4-6, 2013,
2013, pp. 947–954.

30. A. El Mouelhi, P. Jégou, C. Terrioux, Microstructures for csps with constraints of arbitrary arity,
in: Proceedings of the Tenth Symposium on Abstraction, Reformulation, and Approximation,
SARA 2013, 11-12 July 2013, 2013.

31. E. C. Freuder, A Sufficient Condition for Backtrack-Free Search, JACM 29 (1) (1982) 24–32.
32. A. El Mouelhi, Classes polynomiales pour CSP : de la théorie à la pratique, Ph.D. thesis, Aix-

Marseille Université (December 2014).
33. P. Jégou, On the consistency of general constraint-satisfaction problems, in: Proceedings of the

11th National Conference on Artificial Intelligence. July 11-15, 1993., 1993, pp. 114–119.
34. R. Debruyne, C. Bessière, Domain Filtering Consistencies, Journal of Artificial Intelligence Re-

search 14 (2001) 205–230.
35. M. C. Cooper, S. Zivny, The power of arc consistency for CSPs defined by partially-ordered

forbidden patterns, in: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, 2016, 2016, pp. 652–661.

28

